330 research outputs found

    Improved Interyarn Friction, Impact Response, and Stab Resistance of Surface Fibrilized Aramid Fabric

    Full text link
    Improvement of the ballistic performance of aramid fabric is an important topic in the study of soft body armors, especially with their increasing use in such applications over the past decades. To enhance and tailor the performance of fabrics, having control over one of its primary energy absorption mechanisms, interyarn friction, is required. Here, a recently reported surface fibrilization method is exploited and optimized to improve interyarn friction in aramid fabrics. Through tow pullout testing of fibrilized fabrics, the fibrilization treatment is shown to provide up to seven times higher pullout energy and six times higher peak load. To correlate the effects of the treatment on the ballistic response, impact tests are conducted on treated fabric targets using a gas gun setup. The fibrilized fabrics displayed a 10 m s‐1 increase in V50 velocity, compared to that of untreated fabrics, while retaining its original flexibility and mechanical strength. Similarly, the fibrilization treatment also resulted in 230% improvement in depth of penetration when dynamically stabbed using a spike impactor. The results demonstrate the potential of the proposed surface fibrilization treatment as a fast and cost‐effective technique to improve the ballistic and stab performance of aramid‐based soft body armors.This work shows improved interyarn, ballistic, and stab resistance properties in aramid fabric through a basic fibrilization treatment. The treated aramid fabrics display a maximum improvement of 665% in yarn pullout energy, a 10 m s−1 increase in V50 velocity, and 230% higher stab impact resistance, while maintaining its original tensile properties.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/151907/1/admi201900881.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/151907/2/admi201900881_am.pd

    Species and Genotype Effects of Bioenergy Crops on Root Production, Carbon and Nitrogen in Temperate Agricultural Soil

    Get PDF
    Bioenergy crops have a secondary benefit if they increase soil organic C (SOC) stocks through capture and allocation below-ground. The effects of four genotypes of short-rotation coppice willow (Salix spp., ‘Terra Nova’ and ‘Tora’) and Miscanthus (M. × giganteus (‘Giganteus’) and M. sinensis (‘Sinensis’)) on roots, SOC and total nitrogen (TN) were quantified to test whether below-ground biomass controls SOC and TN dynamics. Soil cores were collected under (‘plant’) and between plants (‘gap’) in a field experiment on a temperate agricultural silty clay loam after 4- and 6-years’ management. Root density was greater under Miscanthus for plant (up to 15.5 kg m–3) compared with gap (up to 2.7 kg m–3) whereas willow had lower densities (up to 3.7 kg m–3). Over two years, SOC increased below 0.2 m depth from 7.1 to 8.5 kg m–3 and was greatest under Sinensis at 0-0.1 m depth (24.8 kg m–3). Miscanthus-derived SOC, based on stable isotope analysis, was greater under plant (11.6 kg m–3) than gap (3.1 kg m–3) for Sinensis. Estimated SOC stock change rates over the two-year period to 1-m depth were 6.4 for Terra Nova, 7.4 for Tora, 3.1 for Giganteus and 8.8 Mg ha–1 year–1 for Sinensis. Rates of change of TN were much less. That SOC matched root mass down the profile, particularly under Miscanthus, indicated that perennial root systems are an important contributor. Willow and Miscanthus offer both biomass production and C sequestration when planted in arable soil

    High yielding biomass ideotypes of willow (Salix spp.) show differences in below ground biomass allocation.

    Get PDF
    Willows (Salix spp.) grown as short rotation coppice (SRC) are viewed as a sustainable source of biomass with a positive greenhouse gas (GHG) balance due to their potential to fix and accumulate carbon (C) below ground. However, exploiting this potential has been limited by the paucity of data available on below ground biomass allocation and the extent to which it varies between genotypes. Furthermore, it is likely that allocation can be altered considerably by environment. To investigate the role of genotype and environment on allocation, four willow genotypes were grown at two replicated field sites in southeast England and west Wales, UK. Above and below ground biomass was intensively measured over two two-year rotations. Significant genotypic differences in biomass allocation were identified, with below ground allocation differing by up to 10% between genotypes. Importantly, the genotype with the highest below ground biomass also had the highest above ground yield. Furthermore, leaf area was found to be a good predictor of below ground biomass. Growth environment significantly impacted allocation; the willow genotypes grown in west Wales had up to 94% more biomass below ground by the end of the second rotation. A single investigation into fine roots showed the same pattern with double the volume of fine roots present. This greater below ground allocation may be attributed primarily to higher wind speeds, plus differences in humidity and soil characteristics. These results demonstrate that the capacity exists to breed plants with both high yields and high potential for C accumulation

    De novo variants disturbing the transactivation capacity of POU3F3 cause a characteristic neurodevelopmental disorder

    No full text
    POU3F3, also referred to as Brain-1, is a well-known transcription factor involved in the development of the central nervous system, but it has not previously been associated with a neurodevelopmental disorder. Here, we report the identification of 19 individuals with heterozygous POU3F3 disruptions, most of which are de novo variants. All individuals had developmental delays and/or intellectual disability and impairments in speech and language skills. Thirteen individuals had characteristic low-set, prominent, and/or cupped ears. Brain abnormalities were observed in seven of eleven MRI reports. POU3F3 is an intronless gene, insensitive to nonsense-mediated decay, and 13 individuals carried protein-truncating variants. All truncating variants that we tested in cellular models led to aberrant subcellular localization of the encoded protein. Luciferase assays demonstrated negative effects of these alleles on transcriptional activation of a reporter with a FOXP2-derived binding motif. In addition to the loss-of-function variants, five individuals had missense variants that clustered at specific positions within the functional domains, and one small in-frame deletion was identified. Two missense variants showed reduced transactivation capacity in our assays, whereas one variant displayed gain-of-function effects, suggesting a distinct pathophysiological mechanism. In bioluminescence resonance energy transfer (BRET) interaction assays, all the truncated POU3F3 versions that we tested had significantly impaired dimerization capacities, whereas all missense variants showed unaffected dimerization with wild-type POU3F3. Taken together, our identification and functional cell-based analyses of pathogenic variants in POU3F3, coupled with a clinical characterization, implicate disruptions of this gene in a characteristic neurodevelopmental disorder

    Tet1 and Tet2 Regulate 5-Hydroxymethylcytosine Production and Cell Lineage Specification in Mouse Embryonic Stem Cells

    Get PDF
    SummaryTET family enzymes convert 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) in DNA. Here, we show that Tet1 and Tet2 are Oct4-regulated enzymes that together sustain 5hmC in mouse embryonic stem cells (ESCs) and are induced concomitantly with 5hmC during reprogramming of fibroblasts to induced pluripotent stem cells. ESCs depleted of Tet1 by RNAi show diminished expression of the Nodal antagonist Lefty1 and display hyperactive Nodal signaling and skewed differentiation into the endoderm-mesoderm lineage in embryoid bodies in vitro. In Fgf4- and heparin-supplemented culture conditions, Tet1-depleted ESCs activate the trophoblast stem cell lineage determinant Elf5 and can colonize the placenta in midgestation embryo chimeras. Consistent with these findings, Tet1-depleted ESCs form aggressive hemorrhagic teratomas with increased endoderm, reduced neuroectoderm, and ectopic appearance of trophoblastic giant cells. Thus, 5hmC is an epigenetic modification associated with the pluripotent state, and Tet1 functions to regulate the lineage differentiation potential of ESCs

    Advanced Parental Age and the Risk of Autism Spectrum Disorder

    Get PDF
    This study evaluated independent effects of maternal and paternal age on risk of autism spectrum disorder. A case-cohort design was implemented using data from 10 US study sites participating in the Centers for Disease Control and Prevention's Autism and Developmental Disabilities Monitoring Network. The 1994 birth cohort included 253,347 study-site births with complete parental age information. Cases included 1,251 children aged 8 years with complete parental age information from the same birth cohort and identified as having an autism spectrum disorder based on Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revision criteria. After adjustment for the other parent's age, birth order, maternal education, and other covariates, both maternal and paternal age were independently associated with autism (adjusted odds ratio for maternal age ≥35 vs. 25–29 years = 1.3, 95% confidence interval: 1.1, 1.6; adjusted odds ratio for paternal age ≥40 years vs. 25–29 years = 1.4, 95% confidence interval: 1.1, 1.8). Firstborn offspring of 2 older parents were 3 times more likely to develop autism than were third- or later-born offspring of mothers aged 20–34 years and fathers aged <40 years (odds ratio = 3.1, 95% confidence interval: 2.0, 4.7). The increase in autism risk with both maternal and paternal age has potential implications for public health planning and investigations of autism etiology

    Absence of the spleen(s) in conjoined twins: a diagnostic clue of laterality defects? Radiological study of historical specimens

    Get PDF
    Laterality defects are quite common in thoracoileopagus and parapagus dicephalus but rare in other types of conjoined twins. To present the presumed laterality defects in cephalothoracoileopagus and prosopothoracoileopagus conjoined twins, based on the unilateral or bilateral absence or duplication of the spleen. Three human anatomical specimens of craniothoracoileopagus (CTIP) twins and one of prosopothoracoileopagus (PTIP) twins were investigated. The specimens were part of the Museum Vrolik collection of the Department of Anatomy and Embryology of the Academic Medical Centre, University of Amsterdam, The Netherlands. The specimens were taken out of their jars and scanned with multidetector CT and volumetric T2-weighted MRI at 1.5 T. The internal anatomy of the specimens was largely in accordance with previous reports. However, there was no recognisable spleen in the right twin in one CTIP specimen, in the left twin in one other CTIP specimen, and in both twins in the third CTIP specimen and in the PTIP specimen. Asplenia and polysplenia are considered reliable indicators of right and left isomerism, respectively. However, three of our four specimens had laterality patterns that did not correspond with those previously reported. Since no other parameters of laterality defects could be verified in these specimens, we concluded that asplenia was unlikely to be caused by laterality defect
    corecore