259 research outputs found
Emergence of bound states in ballistic magnetotransport of graphene antidots
An experimental method for detection of bound states around an antidot formed
from a hole in a graphene sheet is proposed by measuring the ballistic two
terminal conductances. In particularly, we consider the effect of bound states
formed by magnetic field on the two terminal conductance and show that one can
observe Breit-Wigner like resonances in the conductance as a function of the
Fermi level close to the energies of the bound states. In addition, we develop
a new numerical method in which the computational effort is proportional to the
linear dimensions, instead of the area of the scattering region beeing typical
for the existing numerical recursive Green's function method.Comment: 7 pages, 6 figure
Additive trees in the analysis of community data
The paper advocates a more extensive use of additive trees in community ecology. When the distance/dissimilarity coefficient is selected carefully, these trees can illuminate structural aspects that are not obvious otherwise. In particular, starting from squared distances based on presence/absence data, the resulting trees approximate relationships in species richness, a feature not available through other graphical techniques. The construction of additive trees is illustrated by three actual examples, representing different circumstances in the analysis of grassland community data
Lande-like formula for the g factors of hole-nanowire subband edges
We have analyzed theoretically the Zeeman splitting of hole-quantum-wire
subband edges. As is typical for any bound state, their g factor depends on
both an intrinsic g factor of the material and an additional contribution
arising from a finite bound-state orbital angular momentum. We discuss the
quantum-confinement-induced interplay between bulk-material and orbital
effects, which is nontrivial due to the presence of strong spin-orbit coupling.
A compact analytical formula is provided that elucidates this interplay and can
be useful for predicting Zeeman splitting in generic hole-wire geometries.Comment: 4 pages, 2 figure
Magnetic and Transport Properties of Fe-Ag granular multilayers
Results of magnetization, magnetotransport and Mossbauer spectroscopy
measurements of sequentially evaporated Fe-Ag granular composites are
presented. The strong magnetic scattering of the conduction electrons is
reflected in the sublinear temperature dependence of the resistance and in the
large negative magnetoresistance. The simultaneous analysis of the magnetic
properties and the transport behavior suggests a bimodal grain size
distribution. A detailed quantitative description of the unusual features
observed in the transport properties is given
A Comparison Of Hip And Knee Joint Kinematics Between Two Alpine Ski Ergometers
This study was conducted to determine if hip and knee joint kinematics differed between conditions as subjects "skied" on two alpine ski ergometers.
Eleven male recreational skiers, ages 18-23, participated in the study. During the random test, sagittal plane motions of the hip and knee joints were videotaped as subjects skied on each ski ergometer at a slow speed (92 turns/minute) and a fast speed (102 turns/minute). Each subject was vid.eotaped at 30 frames per second during the last thirty seconds of a two minute exercise bout. Three turns were randomly selected and digitized on the Ariel Performance Analysis System (APAS). Relative angular displacements of the left hip and knee were measured and compared. Hip and knee flexion were significantly different between the two ergometers at the fast speed. A comparison of the fast and slow trials revealed that subjects were able to achieve more knee flexion at the fast speed on one ergometer.
However, on the other ergometer, the degree of knee flexion was greater at the slow speed. How closely the two ski ergometers simulate actual downhill skiing is unknown and warrants further investigation
Nanoscale spin-polarization in dilute magnetic semiconductor (In,Mn)Sb
Results of point contact Andreev reflection (PCAR) experiments on (In,Mn)Sb
are presented and analyzed in terms of current models of charge conversion at a
superconductor-ferromagnet interface. We investigate the influence of surface
transparency, and study the crossover from ballistic to diffusive transport
regime as contact size is varied. Application of a Nb tip to a (In,Mn)Sb sample
with Curie temperature Tc of 5.4 K allowed the determination of
spin-polarization when the ferromagnetic phase transition temperature is
crossed. We find a striking difference between the temperature dependence of
the local spin polarization and of the macroscopic magnetization, and
demonstrate that nanoscale clusters with magnetization close to the saturated
value are present even well above the magnetic phase transition temperature.Comment: 4 page
Single-born XX /XY chimaeric bulls with normal phenotype
International audienc
Strong spin relaxation length dependence on electric field gradients
We discuss the influence of electrical effects on spin transport, and in
particular the propagation and relaxation of spin polarized electrons in the
presence of inhomogeneous electric fields. We show that the spin relaxation
length strongly depends on electric field gradients, and that significant
suppression of electron spin polarization can occur as a result thereof. A
discussion in terms of a drift-diffusion picture, and self-consistent numerical
calculations based on a Boltzmann-Poisson approach shows that the spin
relaxation length in fact can be of the order of the charge screening length.Comment: 4 pages, 3 figures, to be presented at PASPSI
- …