871 research outputs found

    Photometric quality of Dome C for the winter 2008 from ASTEP South

    Get PDF
    ASTEP South is an Antarctic Search for Transiting Exo- Planets in the South pole field, from the Concordia station, Dome C, Antarctica. The instrument consists of a thermalized 10 cm refractor observing a fixed 3.88\degree x 3.88\degree field of view to perform photometry of several thousand stars at visible wavelengths (700-900 nm). The first winter campaign in 2008 led to the retrieval of nearly 1600 hours of data. We derive the fraction of photometric nights by measuring the number of detectable stars in the field. The method is sensitive to the presence of small cirrus clouds which are invisible to the naked eye. The fraction of night-time for which at least 50% of the stars are detected is 74% from June to September 2008. Most of the lost time (18.5% out of 26%) is due to periods of bad weather conditions lasting for a few days ("white outs"). Extended periods of clear weather exist. For example, between July 10 and August 10, 2008, the total fraction of time (day+night) for which photometric observations were possible was 60%. This confirms the very high quality of Dome C for nearly continuous photometric observations during the Antarctic winter

    ASTEP South: An Antarctic Search for Transiting ExoPlanets around the celestial South pole

    Get PDF
    ASTEP South is the first phase of the ASTEP project (Antarctic Search for Transiting ExoPlanets). The instrument is a fixed 10 cm refractor with a 4kx4k CCD camera in a thermalized box, pointing continuously a 3.88 degree x 3.88 degree field of view centered on the celestial South pole. ASTEP South became fully functional in June 2008 and obtained 1592 hours of data during the 2008 Antarctic winter. The data are of good quality but the analysis has to account for changes in the point spread function due to rapid ground seeing variations and instrumental effects. The pointing direction is stable within 10 arcseconds on a daily timescale and drifts by only 34 arcseconds in 50 days. A truly continuous photometry of bright stars is possible in June (the noon sky background peaks at a magnitude R=15 arcsec-2 on June 22), but becomes challenging in July (the noon sky background magnitude is R=12.5 arcsec?2 on July 20). The weather conditions are estimated from the number of stars detected in the field. For the 2008 winter, the statistics are between 56.3 % and 68.4 % of excellent weather, 17.9 % to 30 % of veiled weather and 13.7 % of bad weather. Using these results in a probabilistic analysis of transit detection, we show that the detection efficiency of transiting exoplanets in one given field is improved at Dome C compared to a temperate site such as La Silla. For example we estimate that a year-long campaign of 10 cm refractor could reach an efficiency of 69 % at Dome C versus 45 % at La Silla for detecting 2-day period giant planets around target stars from magnitude 10 to 15. This shows the high potential of Dome C for photometry and future planet discoveries. [Short abstract

    Spatiotemporal propagation of cerebral hemodynamics during and after resuscitation from cardiac arrest

    Get PDF
    Cardiac arrest (CA) affects over 500,000 people in the United States. Although resuscitation efforts have improved, poor neurological outcome is the leading cause of morbidity in CA survivors, and only 8.3% of out-of-hospital CA survivors have good neurological recovery. Therefore, a detailed understanding of the brain before, during, and after CA and resuscitation is critical. We have previously shown, in a preclinical model of asphyxial CA, that measurement of cerebral blood flow (CBF) is essential to better understand what happens to the brain during CA and resuscitation. We have shown that CBF data can be used to predict the time when brain electrical activity resumes. Moreover, we have described CBF characteristics after resuscitation, including the hyperemic peak and stabilized hypoperfusion. Overall, our previous work focused on the study of the temporal evolution of CBF dynamics. To provide a more complete picture of CBF dynamics associated with CA and resuscitation, we postulate that both the temporal and spatial evolution of CBF dynamics must be understood. To investigate spatiotemporal dynamics, we used laser speckle imaging (LSI) to image rats (n = 6) that underwent either 5- or 7-min asphyxial CA, followed by cardiopulmonary resuscitation (CPR) until return of spontaneous circulation (ROSC). During induction of global cerebral ischemia through CA, we have observed two periods during which a decrease in CBF propagates in space in a cranial window over the right hemisphere. The first period of time is during CA and the second is after the hyperemic peak, before stabilized hypoperfusion occurs post-ROSC. Figure 1 shows a representative rat blood flow maps of the spatial propagation during CA (top row) and after ROSC (bottom row). For each row, the leftmost image shows CBF at t = 0min, and each subsequent image to the right is the time after the initial image. The arrows on the images represent the propagation direction in which CBF decreases. In this example, during CA, the propagation direction is down and to the left (posterior-medial anatomically), while after ROSC it is down and to the right (posterior-laterally, anatomically). Please click Additional Files below to see the full abstract

    Biosynthesis of vitamin B12: the multi-enzyme synthesis of precorrin-4 and factor IV

    Get PDF
    AbstractBackground: In order to study the biosynthesis of vitamin B12, it is necessary to produce various intermediates along the biosynthetic pathway by enzymic methods. Recently, information on the organisation of the biosynthetic pathway has permitted the selection of the set of enzymes needed to biosynthesise any specific identified intermediate. The aim of the present work was to use recombinant enzymes in reconstituted multi-enzyme systems to biosynthesise particular intermediates.Results: The products of the cobG and cobJ genes from Pseudomonas denitrificans were expressed heterologously in Escherichia coli to afford good levels of activity of the corresponding enzymes, CobG and CobJ. Aerobic incubation of precorrin-3A with the CobG enzyme alone yielded precorrin-3B. When CobJ and S-adenosyl-l-methionine were included in the incubation, the product was precorrin-4. Both precorrin-3B and precorrin-4 are known precursors of vitamin B12 and their availability has allowed new mechanistic studies of enzymic transformations.Conclusions: Our results show that the expression of the CobG and CobJ enzymes has been successful, thus facilitating the biosynthesis of two precursors of vitamin B12. This lays the foundation for the structure determination of CobG and CobJ as well as future enzymic experiments focusing on later steps of vitamin B12 biosynthesis

    Preventing corona effects: multi-phosphonic acid poly(ethylene glycol) copolymers for stable stealth iron oxide nanoparticles

    Full text link
    When disperse in biological fluids, engineered nanoparticles are selectively coated with proteins, resulting in the formation of a protein corona. It is suggested that the protein corona is critical in regulating the conditions of entry into the cytoplasm of living cells. Recent reports describe this phenomenon as ubiquitous and independent of the nature of the particle. For nanomedicine applications however, there is a need to design advanced and cost-effective coatings that are resistant to protein adsorption and that increase the biodistribution in vivo. In this study, phosphonic acid poly(ethylene glycol) copolymers were synthesized and used to coat iron oxide particles. The copolymer composition was optimized to provide simple and scalable protocols as well as long-term stability in culture media. It is shown that polymers with multiple phosphonic acid functionalities and PEG chains outperform other types of coating, including ligands, polyelectrolytes and carboxylic acid functionalized PEG. PEGylated particles exhibit moreover exceptional low cellular uptake, of the order of 100 femtograms of iron per cell. The present approach demonstrates that the surface chemistry of engineered particles is a key parameter in the interactions with cells. It also opens up new avenues for the efficient functionalization of inorganic surfaces.Comment: 21 page, 7 figures,Biomacromolecules 201
    • …
    corecore