206 research outputs found

    On the molecules of numerical semigroups, Puiseux monoids, and Puiseux algebras

    Full text link
    A molecule is a nonzero non-unit element of an integral domain (resp., commutative cancellative monoid) having a unique factorization into irreducibles (resp., atoms). Here we study the molecules of Puiseux monoids as well as the molecules of their corresponding semigroup algebras, which we call Puiseux algebras. We begin by presenting, in the context of numerical semigroups, some results on the possible cardinalities of the sets of molecules and the sets of reducible molecules (i.e., molecules that are not irreducibles/atoms). Then we study the molecules in the more general context of Puiseux monoids. We construct infinitely many non-isomorphic atomic Puiseux monoids all whose molecules are atoms. In addition, we characterize the molecules of Puiseux monoids generated by rationals with prime denominators. Finally, we turn to investigate the molecules of Puiseux algebras. We provide a characterization of the molecules of the Puiseux algebras corresponding to root-closed Puiseux monoids. Then we use such a characterization to find an infinite class of Puiseux algebras with infinitely many non-associated reducible molecules.Comment: 21 pages, 2 figure

    Study of cost/benefit tradeoffs for reducing the energy consumption of the commercial air transportation system

    Get PDF
    Economic studies were conducted for three general fuel conserving options: (1) improving fuel consumption characteristics of existing aircraft via retrofit modifications; (2) introducing fuel efficient derivations of existing production aircraft and/or introducing fuel efficient, current state-of-the-art new aircraft; and (3) introducing an advanced state-of-the-art turboprop airplane. These studies were designed to produce an optimum airline fleet mix for the years 1980, 1985 and 1990. The fleet selected accommodated a normal growth market by introducing somewhat larger aircraft while solving for maximum departure frequencies and a minimum load factor corresponding to a 15% investment hurdle rate. Fuel burnt per available-seat-mile flown would drop 22% from 1980 to 1990 due to the use of more fuel efficient aircraft designs, larger average aircraft size, and increased seating density. An inflight survey was taken to determine air traveler attitudes towards a new generation of advanced turboprops

    Electric utility acid fuel cell stack technology advancement

    Get PDF
    The principal effort under this program was directed at the fuel cell stack technology required to accomplish the initial feasibility demonstrations of increased cell stack operating pressures and temperatures, increased cell active area, incorporation of the ribbed substrate cell configuration at the bove conditions, and the introduction of higher performance electrocatalysts. The program results were successful with the primary accomplishments being: (1) fabrication of 10 sq ft ribbed substrate, cell components including higher performing electrocatalysts; (2) assembly of a 10 sq ft, 30-cell short stack; and (3) initial test of this stack at 120 psia and 405 F. These accomplishments demonstrate the feasibility of fabricating and handling large area cells using materials and processes that are oriented to low cost manufacture. An additional accomplishment under the program was the testing of two 3.7 sq ft short stacks at 12 psia/405 F to 5400 and 4500 hours respectively. These tests demonstrate the durability of the components and the cell stack configuration to a nominal 5000 hours at the higher pressure and temperature condition planned for the next electric utility power plant

    Genetic diversity and demographic instability in Riftia pachyptila tubeworms from eastern Pacific hydrothermal vents

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Deep-sea hydrothermal vent animals occupy patchy and ephemeral habitats supported by chemosynthetic primary production. Volcanic and tectonic activities controlling the turnover of these habitats contribute to demographic instability that erodes genetic variation within and among colonies of these animals. We examined DNA sequences from one mitochondrial and three nuclear gene loci to assess genetic diversity in the siboglinid tubeworm, <it>Riftia pachyptila</it>, a widely distributed constituent of vents along the East Pacific Rise and Galápagos Rift.</p> <p>Results</p> <p>Genetic differentiation (<it>F</it><sub><it>ST</it></sub>) among populations increased with geographical distances, as expected under a linear stepping-stone model of dispersal. Low levels of DNA sequence diversity occurred at all four loci, allowing us to exclude the hypothesis that an idiosyncratic selective sweep eliminated mitochondrial diversity alone. Total gene diversity declined with tectonic spreading rates. The southernmost populations, which are subjected to superfast spreading rates and high probabilities of extinction, are relatively homogenous genetically.</p> <p>Conclusions</p> <p>Compared to other vent species, DNA sequence diversity is extremely low in <it>R. pachyptila</it>. Though its dispersal abilities appear to be effective, the low diversity, particularly in southern hemisphere populations, is consistent with frequent local extinction and (re)colonization events.</p
    corecore