229 research outputs found

    A Phase Front Instability in Periodically Forced Oscillatory Systems

    Full text link
    Multiplicity of phase states within frequency locked bands in periodically forced oscillatory systems may give rise to front structures separating states with different phases. A new front instability is found within bands where ωforcing/ωsystem=2n\omega_{forcing}/\omega_{system}=2n (n>1n>1). Stationary fronts shifting the oscillation phase by π\pi lose stability below a critical forcing strength and decompose into nn traveling fronts each shifting the phase by π/n\pi/n. The instability designates a transition from stationary two-phase patterns to traveling nn-phase patterns

    Dynamics of Turing patterns under spatio-temporal forcing

    Get PDF
    We study, both theoretically and experimentally, the dynamical response of Turing patterns to a spatio-temporal forcing in the form of a travelling wave modulation of a control parameter. We show that from strictly spatial resonance, it is possible to induce new, generic dynamical behaviors, including temporally-modulated travelling waves and localized travelling soliton-like solutions. The latter make contact with the soliton solutions of P. Coullet Phys. Rev. Lett. {\bf 56}, 724 (1986) and provide a general framework which includes them. The stability diagram for the different propagating modes in the Lengyel-Epstein model is determined numerically. Direct observations of the predicted solutions in experiments carried out with light modulations in the photosensitive CDIMA reaction are also reported.Comment: 6 pages, 5 figure

    Multi-Phase Patterns in Periodically Forced Oscillatory Systems

    Full text link
    Periodic forcing of an oscillatory system produces frequency locking bands within which the system frequency is rationally related to the forcing frequency. We study extended oscillatory systems that respond to uniform periodic forcing at one quarter of the forcing frequency (the 4:1 resonance). These systems possess four coexisting stable states, corresponding to uniform oscillations with successive phase shifts of π/2\pi/2. Using an amplitude equation approach near a Hopf bifurcation to uniform oscillations, we study front solutions connecting different phase states. These solutions divide into two groups: π\pi-fronts separating states with a phase shift of π\pi and π/2\pi/2-fronts separating states with a phase shift of π/2\pi/2. We find a new type of front instability where a stationary π\pi-front ``decomposes'' into a pair of traveling π/2\pi/2-fronts as the forcing strength is decreased. The instability is degenerate for an amplitude equation with cubic nonlinearities. At the instability point a continuous family of pair solutions exists, consisting of π/2\pi/2-fronts separated by distances ranging from zero to infinity. Quintic nonlinearities lift the degeneracy at the instability point but do not change the basic nature of the instability. We conjecture the existence of similar instabilities in higher 2n:1 resonances (n=3,4,..) where stationary π\pi-fronts decompose into n traveling π/n\pi/n-fronts. The instabilities designate transitions from stationary two-phase patterns to traveling 2n-phase patterns. As an example, we demonstrate with a numerical solution the collapse of a four-phase spiral wave into a stationary two-phase pattern as the forcing strength within the 4:1 resonance is increased

    Points, Walls and Loops in Resonant Oscillatory Media

    Full text link
    In an experiment of oscillatory media, domains and walls are formed under the parametric resonance with a frequency double the natural one. In this bi-stable system, %phase jumps π\pi by crossing walls. a nonequilibrium transition from Ising wall to Bloch wall consistent with prediction is confirmed experimentally. The Bloch wall moves in the direction determined by its chirality with a constant speed. As a new type of moving structure in two-dimension, a traveling loop consisting of two walls and Neel points is observed.Comment: 9 pages (revtex format) and 6 figures (PostScript

    Log-periodic corrections to scaling: exact results for aperiodic Ising quantum chains

    Full text link
    Log-periodic amplitudes of the surface magnetization are calculated analytically for two Ising quantum chains with aperiodic modulations of the couplings. The oscillating behaviour is linked to the discrete scale invariance of the perturbations. For the Fredholm sequence, the aperiodic modulation is marginal and the amplitudes are obtained as functions of the deviation from the critical point. For the other sequence, the perturbation is relevant and the critical surface magnetization is studied.Comment: 12 pages, TeX file, epsf, iopppt.tex, xref.tex which are joined. 4 postcript figure

    A simple derivation of Kepler's laws without solving differential equations

    Full text link
    Proceeding like Newton with a discrete time approach of motion and a geometrical representation of velocity and acceleration, we obtain Kepler's laws without solving differential equations. The difficult part of Newton's work, when it calls for non trivial properties of ellipses, is avoided by the introduction of polar coordinates. Then a simple reconsideration of Newton's figure naturally leads to en explicit expression of the velocity and to the equation of the trajectory. This derivation, which can be fully apprehended by beginners at university (or even before) can be considered as a first application of mechanical concepts to a physical problem of great historical and pedagogical interest

    Topological Hysteresis in the Intermediate State of Type-I Superconductors

    Full text link
    Magneto-optical imaging of thick stress-free lead samples reveals two distinct topologies of the intermediate state. Flux tubes are formed upon magnetic field penetration (closed topology) and laminar patterns appear upon flux exit (open topology). Two-dimensional distributions of shielding currents were obtained by applying an efficient inversion scheme. Quantitative analysis of the magnetic induction distribution and correlation with magnetization measurements indicate that observed topological differences between the two phases are responsible for experimentally observable magnetic hysteresis.Comment: 4 pages, RevTex

    Spiral Waves in Chaotic Systems

    Full text link
    Spiral waves are investigated in chemical systems whose underlying spatially-homogeneous dynamics is governed by a deterministic chaotic attractor. We show how the local periodic behavior in the vicinity of a spiral defect is transformed to chaotic dynamics far from the defect. The transformation occurs by a type of period doubling as the distance from the defect increases. The change in character of the dynamics is described in terms of the phase space flow on closed curves surrounding the defect.Comment: latex file with three postscript figures to appear in Physical review Letter

    Controlling domain patterns far from equilibrium

    Full text link
    A high degree of control over the structure and dynamics of domain patterns in nonequilibrium systems can be achieved by applying nonuniform external fields near parity breaking front bifurcations. An external field with a linear spatial profile stabilizes a propagating front at a fixed position or induces oscillations with frequency that scales like the square root of the field gradient. Nonmonotonic profiles produce a variety of patterns with controllable wavelengths, domain sizes, and frequencies and phases of oscillations.Comment: Published version, 4 pages, RevTeX. More at http://t7.lanl.gov/People/Aric

    Expanding direction of the period doubling operator

    Full text link
    We prove that the period doubling operator has an expanding direction at the fixed point. We use the induced operator, a ``Perron-Frobenius type operator'', to study the linearization of the period doubling operator at its fixed point. We then use a sequence of linear operators with finite ranks to study this induced operator. The proof is constructive. One can calculate the expanding direction and the rate of expansion of the period doubling operator at the fixed point
    • …
    corecore