8,608 research outputs found
Capabilities and Skills
This paper discusses the relevance of recent research on the economics of human development to the work of the Human Development and Capability Association. The recent economics of human development brings insights about the dynamics of skill accumulation to an otherwise static literature on capabilities. Skills embodied in agents empower people. Enhanced skills enhance opportunities and hence promote capabilities. We address measurement problems common to both the economics of human development and the capability approach. The economics of human development analyzes the dynamics of preference formation, but is silent about which preferences should be used to evaluate alternative policies. This is both a strength and a limitation of the approach
OGO-6 gas-surface energy transfer experiment
The kinetic energy flux of the upper atmosphere was analyzed using OGO-6 data. Energy transfer between 10 microwatts/sq cm and 0.1 W/sq cm was measured by short-term frequency changes of temperature-sensitive quartz crystals used in the energy transfer probe. The condition of the surfaces was continuously monitored by a quartz crystal microbalance to determine the effect surface contamination had on energy accommodation. Results are given on the computer analysis and laboratory tests performed to optimize the operation of the energy transfer probe. Data are also given on the bombardment of OGO-6 surfaces by high energy particles. The thermoelectrically-cooled quartz crystal microbalance is described in terms of its development and applications
Using inactivating mutations to provide insight into drug action
The role of ezetimibe in lowering plasma cholesterol has been established; however, controversy remains about its clinical benefit. A recent study utilizes naturally occurring genetic variation within the NPC1-like 1 gene (NPC1L1) to demonstrate the potential for pharmacologic inhibition of the protein to reduce the risk of coronary heart disease. This research demonstrates the application of the concept of genocopy to a population-based validation of NPC1L1 as a therapeutic target
Multilateral Research Opportunities in Ground Analogs
The global economy forces many nations to consider their national investments and make difficult decisions regarding their investment in future exploration. International collaboration provides an opportunity to leverage other nations' investments to meet common goals. The Humans In Space Community shares a common goal to enable safe, reliable, and productive human space exploration within and beyond Low Earth Orbit. Meeting this goal requires efficient use of limited resources and International capabilities. The International Space Station (ISS) is our primary platform to conduct microgravity research targeted at reducing human health and performance risks for exploration missions. Access to ISS resources, however, is becoming more and more constrained and will only be available through 2020 or 2024. NASA's Human Research Program (HRP) is actively pursuing methods to effectively utilize the ISS and appropriate ground analogs to understand and mitigate human health and performance risks prior to embarking on human exploration of deep space destinations. HRP developed a plan to use ground analogs of increasing fidelity to address questions related to exploration missions and is inviting International participation in these planned campaigns. Using established working groups and multilateral panels, the HRP is working with multiple Space Agencies to invite International participation in a series of 30- day missions that HRP will conduct in the US owned and operated Human Exploration Research Analog (HERA) during 2016. In addition, the HRP is negotiating access to Antarctic stations (both US and non-US), the German :envihab and Russian NEK facilities. These facilities provide unique capabilities to address critical research questions requiring longer duration simulation or isolation. We are negotiating release of international research opportunities to ensure a multilateral approach to future analog research campaigns, hoping to begin multilateral campaigns in the latter facilities by 2017. Collaborative use of analog facilities and shared investment in the development of spaceflight countermeasures through multilateral campaigns or missions that leverage the global scientific community will focus high quality research and provide sufficient power to accelerate the development of countermeasures and drive sound recommendations for exploration missions. This panel will provide an overview of efforts to encourage and facilitate multilateral collaboration in analog missions or campaigns and describe the facilities currently under consideration to reach the common goal of enabling safe, reliable, and productive human space exploration
Semi-classical limit and minimum decoherence in the Conditional Probability Interpretation of Quantum Mechanics
The Conditional Probability Interpretation of Quantum Mechanics replaces the
abstract notion of time used in standard Quantum Mechanics by the time that can
be read off from a physical clock. The use of physical clocks leads to apparent
non-unitary and decoherence. Here we show that a close approximation to
standard Quantum Mechanics can be recovered from conditional Quantum Mechanics
for semi-classical clocks, and we use these clocks to compute the minimum
decoherence predicted by the Conditional Probability Interpretation.Comment: 8 pages, references adde
NASA/RAE collaboration on nonlinear control using the F-8C digital fly-by-wire aircraft
Design procedures are reviewed for variable integral control to optimize response (VICTOR) algorithms and results of preliminary flight tests are presented. The F-8C aircraft is operated in the remotely augmented vehicle (RAV) mode, with the control laws implemented as FORTRAN programs on a ground-based computer. Pilot commands and sensor information are telemetered to the ground, where the data are processed to form surface commands which are then telemetered back to the aircraft. The RAV mode represents a singlestring (simplex) system and is therefore vulnerable to a hardover since comparison monitoring is not possible. Hence, extensive error checking is conducted on both the ground and airborne computers to prevent the development of potentially hazardous situations. Experience with the RAV monitoring and validation procedures is described
Impact-induced acceleration by obstacles
We explore a surprising phenomenon in which an obstruction accelerates,
rather than decelerates, a moving flexible object. It has been claimed that the
right kind of discrete chain falling onto a table falls \emph{faster} than a
free-falling body. We confirm and quantify this effect, reveal its complicated
dependence on angle of incidence, and identify multiple operative mechanisms.
Prior theories for direct impact onto flat surfaces, which involve a single
constitutive parameter, match our data well if we account for a characteristic
delay length that must impinge before the onset of excess acceleration. Our
measurements provide a robust determination of this parameter. This supports
the possibility of modeling such discrete structures as continuous bodies with
a complicated constitutive law of impact that includes angle of incidence as an
input.Comment: small changes and corrections, added reference
Datos fisico-quimicos de los medios acuaticos de la zona del Mamoré central : region de Trinidad - Amazonia boliviana
La caractérisation physico-chimique des cours d'eau et des lacs de la région de Trinidad a permis de distinguer deux grands types d'eaux. Les eaux d'origine andine (le rio Mamoré et les lagunes qu'il alimente) qui sont plus minéralisées, de type bicarbonaté calcique, avec de fortes teneurs relatives en calcium, magnésium et sulfates. Les eaux de la plaine (rio Mocovi et les lagunes peu profondes éloignées du rio Mamoré) qui sont de type variable avec de fortes teneurs relatives en fer et potassium. L'évolution de l'hydrochimie de ces milieux, au cours du cycle hydrologique montre une forte influence du rio Mamoré en période de hautes eaux sur le milieu lacustre, liée aux zones d'inondation. (Résumé d'auteur
Practical Methods for Continuous Gravitational Wave Detection using Pulsar Timing Data
Gravitational Waves (GWs) are tiny ripples in the fabric of space-time
predicted by Einstein's General Relativity. Pulsar timing arrays (PTAs) are
well poised to detect low frequency ( -- Hz) GWs in the near
future. There has been a significant amount of research into the detection of a
stochastic background of GWs from supermassive black hole binaries (SMBHBs).
Recent work has shown that single continuous sources standing out above the
background may be detectable by PTAs operating at a sensitivity sufficient to
detect the stochastic background. The most likely sources of continuous GWs in
the pulsar timing frequency band are extremely massive and/or nearby SMBHBs. In
this paper we present detection strategies including various forms of matched
filtering and power spectral summing. We determine the efficacy and
computational cost of such strategies. It is shown that it is computationally
infeasible to use an optimal matched filter including the poorly constrained
pulsar distances with a grid based method. We show that an Earth-term-matched
filter constructed using only the correlated signal terms is both
computationally viable and highly sensitive to GW signals. This technique is
only a factor of two less sensitive than the computationally unrealizable
optimal matched filter and a factor of two more sensitive than a power spectral
summing technique. We further show that a pairwise matched filter, taking the
pulsar distances into account is comparable to the optimal matched filter for
the single template case and comparable to the Earth-term-matched filter for
many search templates. Finally, using simulated data optimal quality, we place
a theoretical minimum detectable strain amplitude of from
continuous GWs at frequencies on the order .Comment: submitted to Ap
- …
