2,194 research outputs found

    Sidebranching induced by external noise in solutal dendritic growth

    Get PDF
    We have studied sidebranching induced by fluctuations in dendritic growth. The amplitude of sidebranching induced by internal (equilibrium) concentration fluctuations in the case of solidification with solutal diffusion is computed. This amplitude turns out to be significantly smaller than values reported in previous experiments.The effects of other possible sources of fluctuations (of an external origin)are examined by introducing non-conserved noise in a phase-field model. This reproduces the characteristics of sidebranching found in experiments. Results also show that sidebranching induced by external noise is qualitatively similar to that of internal noise, and it is only distinguished by its amplitude.Comment: 13 pages, 5 figure

    Phase-field model for Hele-Shaw flows with arbitrary viscosity contrast. II. Numerical study

    Full text link
    We implement a phase-field simulation of the dynamics of two fluids with arbitrary viscosity contrast in a rectangular Hele-Shaw cell. We demonstrate the use of this technique in different situations including the linear regime, the stationary Saffman-Taylor fingers and the multifinger competition dynamics, for different viscosity contrasts. The method is quantitatively tested against analytical predictions and other numerical results. A detailed analysis of convergence to the sharp interface limit is performed for the linear dispersion results. We show that the method may be a useful alternative to more traditional methods.Comment: 13 pages in revtex, 5 PostScript figures. changes: 1 reference added, figs. 4 and 5 rearrange

    Transoesophageal detection of heart graft rejection by electrical impedance: using Finite Element Method simulations

    Get PDF
    Previous studies have shown that it is possible to evaluate heart graft rejection level using a bioimpedance technique by means of an intracavitary catheter. However, this technique does not present relevant advantages compared to the gold standard for the detection of a heart rejection, which is the biopsy of the endomyocardial tissue. We propose to use a less invasive technique that consists in the use of a transoesophageal catheter and two standard ECG electrodes on the thorax. The aim of this work is to evaluate different parameters affecting the impedance measurement, including: sensitivity to electrical conductivity and permittivity of different organs in the thorax, lung edema and pleural water. From these results, we deduce the best estimator for cardiac rejection detection, and we obtain the tools to identify possible cases of false positive of heart rejection due to other factors. To achieve these objectives we have created a thoracic model and we have simulated, with a FEM program, different situations at the frequencies of 13, 30, 100, 300 and 1000 kHz. Our simulation demonstrates that the phase, at 100 and 300 kHz, has the higher sensitivity to changes in the electrical parameters of the heart muscle.Peer ReviewedPostprint (author’s final draft

    Phase-field model for Hele-Shaw flows with arbitrary viscosity contrast. I. Theoretical approach

    Full text link
    We present a phase-field model for the dynamics of the interface between two inmiscible fluids with arbitrary viscosity contrast in a rectangular Hele-Shaw cell. With asymptotic matching techniques we check the model to yield the right Hele-Shaw equations in the sharp-interface limit and compute the corrections to these equations to first order in the interface thickness. We also compute the effect of such corrections on the linear dispersion relation of the planar interface. We discuss in detail the conditions on the interface thickness to control the accuracy and convergence of the phase-field model to the limiting Hele-Shaw dynamics. In particular, the convergence appears to be slower for high viscosity contrasts.Comment: 17 pages in revtex. changes: 1 reference adde

    FeAl and NbAl3 intermetallic- HVOF coatings: structure and properties

    Get PDF
    Transition metal aluminides in their coating form are currently being explored in terms of resistance to oxidation and mechanical behavior. This interest in transition metal aluminides is mainly due to the fact that their high Al content makes them attractive for high-temperature applications. This is also a reason to study their resistance to wear; they may be suitable for use in applications that produce a lot of wear in aggressive environments, thus replacing established coating materials. In this study, the microstructure, microhardness, and wear and oxidation performance of FeAl and NbAl3 coatings produced by highvelocity oxy-fuel spraying are evaluated with two main aims: (i) to compare these two coating systems¿a commonly studied aluminide (FeAl) and, NbAl3, an aluminide whose deposition by thermal spraying has not been attempted to date¿and (ii) to analyze the relationship between their microstructure, composition and properties, and so clarify their wear and oxidation mechanisms. In the present study, the higher hardness of niobium aluminide coatings did not correlate with a higher wear resistance and, finally, although pesting phenomena (disintegration in oxidizing environments) were already known of in bulk niobium aluminides, here their behavior in the coating form is examined. It was shown that such accelerated oxidation was inevitable with respect to the better resistance of FeAl, but further improvements are foreseen by addition of alloying elements in that alloy

    Feasibility of using low pressure cold gas spray for the spraying of thick ceramic hydroxyapatite coatings

    Get PDF
    This article deals with the production of thick ceramic hydroxyapatite coatings obtained by Low Pressure Cold Gas Spray (LPCGS) system. Several factors such as powder microstructure, surface roughness and cold gas spray system are here discussed in the build‐up process. The use of nanocrystalline powder composed by fine agglomerates and needle‐like shape microstructure allows the realignment and compaction of individual crystallites to form thick deposits. In addition, the activation of the substrate surface results convenient for the first impinging particles anchored properly. Then, layer by layer, particles can remain attached leading to coating build‐up. Additionally, the use of low shock pressure as well as constant feeding system provided by LPCGS system lead to homogeneous coatings in comparison with High Pressure Cold Gas Spray (HPCGS) system. The successful coating build‐up has been achieved not only by the use of an agglomerated feedstock powder, but also by previous surface treatment and the use of the low pressure system. The obtaining of HA components by LPCGS is promising within biomedical field. An improvement of component strength is also suggested by means of thermomechanical analysis of the powder. The performance of a post heat‐treatment leads to an increase in HA strength, as well as crystal size

    The effect of hot treatment on composition and microstructure of HVOF iron aluminide coatings in Na2SO4 molten salts

    Get PDF
    The paper deals with the hot corrosion performance of FeAl base intermetallic HVOF coatings in molten Na2SO4 at 850 C in an isothermal process over the span of 45 h under static conditions. The test was validated with electron microscopy and compositional analyses in the cross-section area, as well as x-ray diffraction techniques. All the coatings were characterized by Al-depleted regions, intersplat oxidation and different stoichiometric ratios of iron aluminides. The results were discussed in relation to the formation of oxide scales on the surface after exposition to corrosive media, as well as heterogeneity and defects of the sprayed coatings. The Fe40Al (at.%) powder showed quite uniform phase distribution after spraying and preserved its integrity after corrosion test; the FeCr25% ? FeAl-TiAl-Al2O3 (wt.%) and Fe46Al-6.55Si (at.%) powders exhibited interface oxidation, with localized corrosion attacks proceeding through particle boundaries and microcrack networks with no evidence of Na and S penetration. FexAly alloys are susceptible to accelerated damage and decohesion of the coating, whereas the formation of sulfides is observed at certain points

    Influence of Cold Gas Spray process conditions on the microstructure of Fe-based amorphous coatings

    Get PDF
    Fe-based amorphous metallic coatings were prepared by Cold Gas Spray process. Through this study, the effects of the process conditions such as spraying distance, gas pressure and temperature on the microstructure of as-sprayed coatings are evaluated. Microstructural studies show that the coatings can present a densely layered structure with porosity below 0.5% and thickness around 800 μm depending on the process conditions. Precipitation of nanocrystals in as-sprayed coatings is observed and present results show its dependence on the thermal and kinetic energy implicated in the process. In general, when gas temperature and pressure decreased, in the studied range, coatings displayed a dense and amorphous structure
    corecore