308 research outputs found
Future aspects of renal transplantation
New and exciting advances in renal transplantation are continuously being made, and the horizons for organ transplantation are bright and open. This article reviews only a few of the newer advances that will allow renal transplantation to become even more widespread and successful. The important and exciting implications for extrarenal organ transplantation are immediately evident. © 1988 Springer-Verlag
A Subset of Latency-Reversing Agents Expose HIV-Infected Resting CD4⁺ T-Cells to Recognition by Cytotoxic T-Lymphocytes
Resting CD4⁺ T-cells harboring inducible HIV proviruses are a critical reservoir in antiretroviral therapy (ART)-treated subjects. These cells express little to no viral protein, and thus neither die by viral cytopathic effects, nor are efficiently cleared by immune effectors. Elimination of this reservoir is theoretically possible by combining latency-reversing agents (LRAs) with immune effectors, such as CD8⁺ T-cells. However, the relative efficacy of different LRAs in sensitizing latently-infected cells for recognition by HIV-specific CD8⁺ T-cells has not been determined. To address this, we developed an assay that utilizes HIV-specific CD8⁺ T-cell clones as biosensors for HIV antigen expression. By testing multiple CD8⁺ T-cell clones against a primary cell model of HIV latency, we identified several single agents that primed latently-infected cells for CD8⁺ T-cell recognition, including IL-2, IL-15, two IL-15 superagonists (IL-15SA and ALT-803), prostratin, and the TLR-2 ligand Pam₃CSK₄. In contrast, we did not observe CD8⁺ T-cell recognition of target cells following treatment with histone deacetylase inhibitors or with hexamethylene bisacetamide (HMBA). In further experiments we demonstrate that a clinically achievable concentration of the IL-15 superagonist ‘ALT-803’, an agent presently in clinical trials for solid and hematological tumors, primes the natural ex vivo reservoir for CD8⁺ T-cell recognition. Thus, our results establish a novel experimental approach for comparative evaluation of LRAs, and highlight ALT-803 as an LRA with the potential to synergize with CD8⁺ T-cells in HIV eradication strategies.United States. National Institutes of Health (AI111860
Enhancing translation: A need to leverage complex preclinical models of addictive drugs to accelerate substance use treatment options
Preclinical models of addictive drugs have been developed for decades to model aspects of the clinical experience in substance use disorders (SUDs). These include passive exposure as well as volitional intake models across addictive drugs and have been utilized to also measure withdrawal symptomatology and potential neuro- behavioral mechanisms underlying relapse to drug seeking or taking. There are a number of Food and Drug Administration (FDA)-approved medications for SUDs, however, many demonstrate low clinical efficacy as well as potential sex differences, and we also note gaps in the continuum of care for certain aspects of clinical ex- periences in individuals who use drugs. In this review, we provide a comprehensive update on both frequently utilized and novel behavioral models of addiction with a focus on translational value to the clinical experience and highlight the need for preclinical research to follow epidemiological trends in drug use patterns to stay abreast of clinical treatment needs. We then note areas in which models could be improved to enhance the medications development pipeline through efforts to enhance translation of preclinical models. Next, we describe neuroscience efforts that can be leveraged to identify novel biological mechanisms to enhance medications development efforts for SUDs, focusing specifically on advances in brain transcriptomics approaches that can provide comprehensive screening and identification of novel targets. Together, the confluence of this review demonstrates the need for careful selection of behavioral models and methodological parameters that better approximate the clinical experience combined with cutting edge neuroscience techniques to advance the med- ications development pipeline for SUDs
Immune reconstitution disease associated with parasitic infections following antiretroviral treatment
HIV-associated immune reconstitution disease (IRD) is the clinical presentation or deterioration of opportunistic infections that results from enhancement of pathogen-specific immune responses among patients responding to antiretroviral treatment (ART). The vast majority of reported cases of IRD have been associated with mycobacterial, chronic viral and invasive fungal infections; such cases result from dysregulated augmentation of cell-mediated type 1 cytokine-secreting host immune responses. However, the spectrum of infections now recognized as associated with IRD is expanding and includes a number of parasitic infections, which may be mediated by different immunopathological mechanisms. These include leishmaniasis (visceral, cutaneous, mucosal and post kala azar dermal leishmaniasis), schistosomiasis and strongyloidiasis. Since the major burden of HIV lies in resource-limited countries where access to ART is now rapidly expanding, increased awareness and knowledge of these phenomena is important. Here we review the clinical spectrum and pathogenesis of IRD associated with parasitic infections
Metabolic and anthropometric parameters contribute to ART-mediated CD4+ T cell recovery in HIV-1-infected individuals: an observational study
Background The degree of immune reconstitution achieved in response to suppressive ART is associated with baseline individual characteristics, such as pre-treatment CD4 count, levels of viral replication, cellular activation, choice of treatment regimen and gender. However, the combined effect of these variables on long-term CD4 recovery remains elusive, and no single variable predicts treatment response. We sought to determine if adiposity and molecules associated with lipid metabolism may affect the response to ART and the degree of subsequent immune reconstitution, and to assess their ability to predict CD4 recovery. Methods We studied a cohort of 69 (48 females and 21 males) HIV-infected, treatment-naïve South African subjects initiating antiretroviral treatment (d4T, 3Tc and lopinavir/ritonavir). We collected information at baseline and six months after viral suppression, assessing anthropometric parameters, dual energy X-ray absorptiometry and magnetic resonance imaging scans, serum-based clinical laboratory tests and whole blood-based flow cytometry, and determined their role in predicting the increase in CD4 count in response to ART. Results We present evidence that baseline CD4+ T cell count, viral load, CD8+ T cell activation (CD95 expression) and metabolic and anthropometric parameters linked to adiposity (LDL/HDL cholesterol ratio and waist/hip ratio) significantly contribute to variability in the extent of CD4 reconstitution (ΔCD4) after six months of continuous ART. Conclusions Our final model accounts for 44% of the variability in CD4+ T cell recovery in virally suppressed individuals, representing a workable predictive model of immune reconstitution
Preparation and optical properties of novel bioactive photonic crystals obtained from core-shell poly(styrene/α-tert-butoxy-ω-vinylbenzyl-polyglycidol) microspheres
Optical properties of polymer microspheres with polystyrene cores and polyglycidol-enriched shells poly(styrene/α-tert-butoxy-ω-vinylbenzyl-polyglycidol) (P(S/PGL) particles with number average diameters Dn determined by scanning electron microscopy equal 237 and 271 nm), were studied before and after immobilization of ovalbumin. The particles were synthesized by emulsifier-free emulsion copolymerization of styrene and polyglycidol macromonomer (poly(styrene/α-tert-butoxy-ω-vinylbenzyl-polyglycidol)) initiated with potassium persulfate. Molar fraction of polyglycidol units in the interfacial layer of the microspheres determined by XPS was equal 42.6 and 34.0%, for the particles with Dn equal 137 and 271 nm, respectively. Colloidal crystals from the aforementioned particles were prepared by deposition of particle suspensions on the glass slides and subsequent evaporation of water. It was found that optical properties of colloidal crystals from the P(S/PGL) microspheres strongly depend on modification of their interfacial layer by covalent immobilization of ovalbumin. The coating of particles with ovalbumin resulted in decreasing their refractive index from 1.58 to 1.52
Prediction of inter-particle adhesion force from surface energy and surface roughness
Fine powder flow is a topic of great interest to industry, in particular for the pharmaceutical industry; a major concern being their poor flow behavior due to high cohesion. In this study, cohesion reduction, produced via surface modification, at the particle scale as well as bulk scale is addressed. The adhesion force model of Derjaguin-Muller-Toporov (DMT) was utilized to quantify the inter-particle adhesion force of both pure and surface modified fine aluminum powders (∼8 μm in size). Inverse Gas Chromatography was utilized for the determination of surface energy of the samples, and Atomic Force Microscopy was utilized to evaluate surface roughness of the powders. Surface modification of the original aluminum powders was done for the purpose of reduction in cohesiveness and improvement in flowability, employing either silane surface treatment or dry mechanical coating of nano-particles on the surface of original powders. For selected samples, the AFM was utilized for direct evaluation of the particle pull-off force. The results indicated that surface modification reduced the surface energy and altered the surface nano-roughness, resulting in drastic reduction of the inter-particle adhesion force. The particle bond number values were computed based on either the inter-particle adhesion force from the DMT model or the inter-particle pull-off force obtained from direct AFM measurements. Surface modification resulted in two to three fold reductions in the Bond number. In order to examine the influence of the particle scale property such as the Bond number on the bulk-scale flow characterization, Angle of Repose measurements were done and showed good qualitative agreements with the Bond number and acid/base surface characteristics of the powders. The results indicate a promising method that may be used to predict flow behavior of original (cohesive) and surface modified (previously cohesive) powders utilizing very small samples
Early Myeloid Dendritic Cell Dysregulation is Predictive of Disease Progression in Simian Immunodeficiency Virus Infection
Myeloid dendritic cells (mDC) are lost from blood in individuals with human immunodeficiency virus (HIV) infection but the mechanism for this loss and its relationship to disease progression are not known. We studied the mDC response in blood and lymph nodes of simian immunodeficiency virus (SIV)-infected rhesus macaques with different disease outcomes. Early changes in blood mDC number were inversely correlated with virus load and reflective of eventual disease outcome, as animals with stable infection that remained disease-free for more than one year had average increases in blood mDC of 200% over preinfection levels at virus set-point, whereas animals that progressed rapidly to AIDS had significant loss of mDC at this time. Short term antiretroviral therapy (ART) transiently reversed mDC loss in progressor animals, whereas discontinuation of ART resulted in a 3.5-fold increase in mDC over preinfection levels only in stable animals, approaching 10-fold in some cases. Progressive SIV infection was associated with increased CCR7 expression on blood mDC and an 8-fold increase in expression of CCL19 mRNA in lymph nodes, consistent with increased mDC recruitment. Paradoxically, lymph node mDC did not accumulate in progressive infection but rather died from caspase-8-dependent apoptosis that was reduced by ART, indicating that increased recruitment is offset by increased death. Lymph node mDC from both stable and progressor animals remained responsive to exogenous stimulation with a TLR7/8 agonist. These data suggest that mDC are mobilized in SIV infection but that an increase in the CCR7-CCL19 chemokine axis associated with high virus burden in progressive infection promotes exodus of activated mDC from blood into lymph nodes where they die from apoptosis. We suggest that inflamed lymph nodes serve as a sink for mDC through recruitment, activation and death that contributes to AIDS pathogenesis
TL1A Selectively Enhances IL-12/IL-18-Induced NK Cell Cytotoxicity against NK-Resistant Tumor Targets
# The Author(s) 2010. This article is published with open access at Springerlink.com Introduction TL1A (TNFSF15) augments IFN-γ production by IL-12/IL-18 responsive human T cells. Its ligand, death domain receptor 3 (DR3), is induced by activation on T and NK cells. Although IL-12/IL-18 induces DR3 expression on most NK cells, addition of TL1A minimally increases IFN-
HIV/SIV Infection Primes Monocytes and Dendritic Cells for Apoptosis
Subversion or exacerbation of antigen-presenting cells (APC) death modulates host/pathogen equilibrium. We demonstrated during in vitro differentiation of monocyte-derived macrophages and monocyte-derived dendritic cells (DCs) that HIV sensitizes the cells to undergo apoptosis in response to TRAIL and FasL, respectively. In addition, we found that HIV-1 increased the levels of pro-apoptotic Bax and Bak molecules and decreased the levels of anti-apoptotic Mcl-1 and FLIP proteins. To assess the relevance of these observations in the context of an experimental model of HIV infection, we investigated the death of APC during pathogenic SIV-infection in rhesus macaques (RMs). We demonstrated increased apoptosis, during the acute phase, of both peripheral blood DCs and monocytes (CD14+) from SIV+RMs, associated with a dysregulation in the balance of pro- and anti-apoptotic molecules. Caspase-inhibitor and death receptors antagonists prevented apoptosis of APCs from SIV+RMs. Furthermore, increased levels of FasL in the sera of pathogenic SIV+RMs were detected, compared to non-pathogenic SIV infection of African green monkey. We suggest that inappropriate apoptosis of antigen-presenting cells may contribute to dysregulation of cellular immunity early in the process of HIV/SIV infection
- …
