26 research outputs found

    Insights into mammalian transcription control by systematic analysis of ChIP sequencing data

    Get PDF
    Abstract Background Transcription regulation is a major controller of gene expression dynamics during development and disease, where transcription factors (TFs) modulate expression of genes through direct or indirect DNA interaction. ChIP sequencing has become the most widely used technique to get a genome wide view of TF occupancy in a cell type of interest, mainly due to established standard protocols and a rapid decrease in the cost of sequencing. The number of available ChIP sequencing data sets in public domain is therefore ever increasing, including data generated by individual labs together with consortia such as the ENCODE project. Results A total of 1735 ChIP-sequencing datasets in mouse and human cell types and tissues were used to perform bioinformatic analyses to unravel diverse features of transcription control. 1- We used the Heat*seq webtool to investigate global relations across the ChIP-seq samples. 2- We demonstrated that factors have a specific genomic location preferences that are, for most factors, conserved across species. 3- Promoter proximal binding of factors was more conserved across cell types while the distal binding sites are more cell type specific. 4- We identified combinations of factors preferentially acting together in a cellular context. 5- Finally, by integrating the data with disease-associated gene loci from GWAS studies, we highlight the value of this data to associate novel regulators to disease. Conclusion In summary, we demonstrate how ChIP sequencing data integration and analysis is powerful to get new insights into mammalian transcription control and demonstrate the utility of various bioinformatic tools to generate novel testable hypothesis using this public resource

    Insights into the Effect of Soil pH on N2O and N2 Emissions and Denitrifier Community Size and Activity ▿

    No full text
    The objective of this study was to investigate how changes in soil pH affect the N2O and N2 emissions, denitrification activity, and size of a denitrifier community. We established a field experiment, situated in a grassland area, which consisted of three treatments which were repeatedly amended with a KOH solution (alkaline soil), an H2SO4 solution (acidic soil), or water (natural pH soil) over 10 months. At the site, we determined field N2O and N2 emissions using the 15N gas flux method and collected soil samples for the measurement of potential denitrification activity and quantification of the size of the denitrifying community by quantitative PCR of the narG, napA, nirS, nirK, and nosZ denitrification genes. Overall, our results indicate that soil pH is of importance in determining the nature of denitrification end products. Thus, we found that the N2O/(N2O + N2) ratio increased with decreasing pH due to changes in the total denitrification activity, while no changes in N2O production were observed. Denitrification activity and N2O emissions measured under laboratory conditions were correlated with N fluxes in situ and therefore reflected treatment differences in the field. The size of the denitrifying community was uncoupled from in situ N fluxes, but potential denitrification was correlated with the count of NirS denitrifiers. Significant relationships were observed between nirS, napA, and narG gene copy numbers and the N2O/(N2O + N2) ratio, which are difficult to explain. However, this highlights the need for further studies combining analysis of denitrifier ecology and quantification of denitrification end products for a comprehensive understanding of the regulation of N fluxes by denitrification

    Disentangling the rhizosphere effect on nitrate reducers and denitrifiers: insight into the role of root exudates

    No full text
    International audienceTo determine to which extent root-derived carbon contributes to the effects of plants on nitrate reducers and denitrifiers, four solutions containing different proportions of sugar, organic acids and amino acids mimicking maize root exudates were added daily to soil microcosms at a concentration of 150 ÎŒg C g−1 of soil. Water-amended soils were used as controls. After 1 month, the size and structure of the nitrate reducer and denitrifier communities were analysed using the narG and napA, and the nirK, nirS and nosZ genes as molecular markers respectively. Addition of artificial root exudates (ARE) did not strongly affect the structure or the density of nitrate reducer and denitrifier communities whereas potential nitrate reductase and denitrification activities were stimulated by the addition of root exudates. An effect of ARE composition was also observed on N2O production with an N2O:(N2O + N2) ratio of 0.3 in microcosms amended with ARE containing 80% of sugar and of 1 in microcosms amended with ARE containing 40% of sugar. Our study indicated that ARE stimulated nitrate reduction or denitrification activity with increases in the range of those observed with the whole plant. Furthermore, we demonstrated that the composition of the ARE affected the nature of the end-product of denitrification and could thus have a putative impact on greenhouse gas emissions

    Mapping spatial patterns of denitrifiers for bridging community ecology and microbial processes along environmental gradients

    No full text
    Affiche, résuméWhile there is ample evidence that microbial processes can exhibit large variations at a field scale, very little is known about the spatial distribution of the communities mediating these processes. The objective of this study was to explore spatial patterns of size and activity of the denitrifying community, a functional guild involved in N-cycling, in a grassland field subjected to different cattle grazing regimes. We used geostatistical modeling to map the distribution of size and activity of the denitrifier community in the pasture. Size of the denitrifier community was estimated by PCR quantification of the denitrification gene copy numbers while its activity was estimated by measuring potential denitrification activity and potential N2O emissions. We found non-random distribution patterns of the size and of the activity of the denitrifier community were observed with a field-scale spatial dependence. The soil properties, which were strongly affected by presence of cattle, imposed significant control on potential denitrification activity, potential N2O production but not on the size of the denitrifier community. The relative abundance of bacteria possessing the nosZ gene encoding the N2O reductase within the total bacterial community was a strong predictor of the N2O/N2 ratio. Overall, our results indicated that patterns of distribution of denitrifiers can be modelled at the field scale. Characterization of such pattern at a field-scale constitutes the first step in modelling distribution of functional bacterial communities at a scale compatible with land management strategies. The abundance of most denitrification genes was not correlated with potential denitrification activity or potential N2O production. However, the relative abundance of bacteria possessing the nosZ gene in the total bacterial community was a strong predictor of the N2O/(N2+N2O) ratio, providing evidence for a relationship between ecosystem processes and bacterial community composition

    Influence du mucilage de maĂŻs sur la structure et les activitĂ©s de communautĂ©s microbiennes fonctionnelles telluriques d’intĂ©rĂȘt agronomique

    No full text
    National audienceLe mucilage est un gel essentiellement polysaccharidique produit et sĂ©crĂ©tĂ© en grande quantitĂ© par les apex racinaires des graminĂ©es principalement (3-50 ”g C/mg MS de racine). L’objectif de ce travail est d’examiner l’impact du mucilage de maĂŻs sur les communautĂ©s fonctionnelles telluriques impliquĂ©es dans les processus de dĂ©nitrification, de biodĂ©gradation de l’atrazine et de minĂ©ralisation du phosphore organique. La dĂ©nitrification est un processus respiratoire microbien au cours duquel les oxydes d’azote solubles, nitrate ou nitrite sont rĂ©duits en gaz N2O et N2. L’atrazine, un herbicide de la famille des s-triazines utilisĂ© essentiellement sur les cultures de maĂŻs, est biodĂ©gradĂ© par une communautĂ© microbienne spĂ©cifique dont l’activitĂ© est promue dans la rhizosphĂšre. La minĂ©ralisation du phosphore organique nĂ©cessite l’intervention de phosphatases extracellulaires pouvant provenir pour partie de la racine, mais qui sont surtout produites par les microorganismes de la rhizosphĂšre.Nous avons collectĂ© du mucilage sur des racines adventives de plants de maĂŻs prĂ©levĂ©s au champ puis nous l’avons apportĂ© quotidiennement pendant 15 jours Ă  du sol nu tandis que de l’eau a Ă©tĂ© ajoutĂ©e au sol tĂ©moin. Nous avons Ă©tudiĂ© l’impact de ces traitements sur la densitĂ© et/ou la structure et/ou l’activitĂ© de ces communautĂ©s fonctionnelles spĂ©cifiques. Nous avons dĂ©terminĂ© : (i) la structure de la communautĂ© nitrate rĂ©ductrice par analyse du polymorphisme du gĂšne narG, (ii) la densitĂ© de la communautĂ© nitrate rĂ©ductrice par dĂ©nombrement et (iii) l’activitĂ© dĂ©nitrifiante potentielle par mesure de la production de N2O par CPG, l’activitĂ© de dĂ©gradation de l’atrazine et l’activitĂ© phosphatase par l’hydrolyse du para-nitrophĂ©nylphosphate.Ainsi, nos travaux conduisent Ă  mieux Ă©valuer par une approche polyphasique l’impact de composĂ©s libĂ©rĂ©s par les racines sur l’écologie des communautĂ©s fonctionnelles du sol rhizosphĂ©rique

    Influence du mucilage de maĂŻs sur la structure et les activitĂ©s de communautĂ©s microbiennes fonctionnelles telluriques d’intĂ©rĂȘt agronomique

    No full text
    National audienceLe mucilage est un gel essentiellement polysaccharidique produit et sĂ©crĂ©tĂ© en grande quantitĂ© par les apex racinaires des graminĂ©es principalement (3-50 ”g C/mg MS de racine). L’objectif de ce travail est d’examiner l’impact du mucilage de maĂŻs sur les communautĂ©s fonctionnelles telluriques impliquĂ©es dans les processus de dĂ©nitrification, de biodĂ©gradation de l’atrazine et de minĂ©ralisation du phosphore organique. La dĂ©nitrification est un processus respiratoire microbien au cours duquel les oxydes d’azote solubles, nitrate ou nitrite sont rĂ©duits en gaz N2O et N2. L’atrazine, un herbicide de la famille des s-triazines utilisĂ© essentiellement sur les cultures de maĂŻs, est biodĂ©gradĂ© par une communautĂ© microbienne spĂ©cifique dont l’activitĂ© est promue dans la rhizosphĂšre. La minĂ©ralisation du phosphore organique nĂ©cessite l’intervention de phosphatases extracellulaires pouvant provenir pour partie de la racine, mais qui sont surtout produites par les microorganismes de la rhizosphĂšre.Nous avons collectĂ© du mucilage sur des racines adventives de plants de maĂŻs prĂ©levĂ©s au champ puis nous l’avons apportĂ© quotidiennement pendant 15 jours Ă  du sol nu tandis que de l’eau a Ă©tĂ© ajoutĂ©e au sol tĂ©moin. Nous avons Ă©tudiĂ© l’impact de ces traitements sur la densitĂ© et/ou la structure et/ou l’activitĂ© de ces communautĂ©s fonctionnelles spĂ©cifiques. Nous avons dĂ©terminĂ© : (i) la structure de la communautĂ© nitrate rĂ©ductrice par analyse du polymorphisme du gĂšne narG, (ii) la densitĂ© de la communautĂ© nitrate rĂ©ductrice par dĂ©nombrement et (iii) l’activitĂ© dĂ©nitrifiante potentielle par mesure de la production de N2O par CPG, l’activitĂ© de dĂ©gradation de l’atrazine et l’activitĂ© phosphatase par l’hydrolyse du para-nitrophĂ©nylphosphate.Ainsi, nos travaux conduisent Ă  mieux Ă©valuer par une approche polyphasique l’impact de composĂ©s libĂ©rĂ©s par les racines sur l’écologie des communautĂ©s fonctionnelles du sol rhizosphĂ©rique

    Influence du mucilage de maĂŻs sur la structure et les activitĂ©s de communautĂ©s microbiennes fonctionnelles telluriques d’intĂ©rĂȘt agronomique

    No full text
    National audienceLe mucilage est un gel essentiellement polysaccharidique produit et sĂ©crĂ©tĂ© en grande quantitĂ© par les apex racinaires des graminĂ©es principalement (3-50 ”g C/mg MS de racine). L’objectif de ce travail est d’examiner l’impact du mucilage de maĂŻs sur les communautĂ©s fonctionnelles telluriques impliquĂ©es dans les processus de dĂ©nitrification, de biodĂ©gradation de l’atrazine et de minĂ©ralisation du phosphore organique. La dĂ©nitrification est un processus respiratoire microbien au cours duquel les oxydes d’azote solubles, nitrate ou nitrite sont rĂ©duits en gaz N2O et N2. L’atrazine, un herbicide de la famille des s-triazines utilisĂ© essentiellement sur les cultures de maĂŻs, est biodĂ©gradĂ© par une communautĂ© microbienne spĂ©cifique dont l’activitĂ© est promue dans la rhizosphĂšre. La minĂ©ralisation du phosphore organique nĂ©cessite l’intervention de phosphatases extracellulaires pouvant provenir pour partie de la racine, mais qui sont surtout produites par les microorganismes de la rhizosphĂšre.Nous avons collectĂ© du mucilage sur des racines adventives de plants de maĂŻs prĂ©levĂ©s au champ puis nous l’avons apportĂ© quotidiennement pendant 15 jours Ă  du sol nu tandis que de l’eau a Ă©tĂ© ajoutĂ©e au sol tĂ©moin. Nous avons Ă©tudiĂ© l’impact de ces traitements sur la densitĂ© et/ou la structure et/ou l’activitĂ© de ces communautĂ©s fonctionnelles spĂ©cifiques. Nous avons dĂ©terminĂ© : (i) la structure de la communautĂ© nitrate rĂ©ductrice par analyse du polymorphisme du gĂšne narG, (ii) la densitĂ© de la communautĂ© nitrate rĂ©ductrice par dĂ©nombrement et (iii) l’activitĂ© dĂ©nitrifiante potentielle par mesure de la production de N2O par CPG, l’activitĂ© de dĂ©gradation de l’atrazine et l’activitĂ© phosphatase par l’hydrolyse du para-nitrophĂ©nylphosphate.Ainsi, nos travaux conduisent Ă  mieux Ă©valuer par une approche polyphasique l’impact de composĂ©s libĂ©rĂ©s par les racines sur l’écologie des communautĂ©s fonctionnelles du sol rhizosphĂ©rique
    corecore