800 research outputs found
Giant lobelias exemplify convergent evolution
Giant lobeliads on tropical mountains in East Africa and Hawaii have highly unusual, giant-rosette growth forms that appear to be convergent on each other and on those of several independently evolved groups of Asteraceae and other families. A recent phylogenetic analysis by Antonelli, based on sequencing the widest selection of lobeliads to date, raises doubts about this paradigmatic example of convergent evolution. Here I address the kinds of evidence needed to test for convergent evolution and argue that the analysis by Antonelli fails on four points. Antonelli's analysis makes several important contributions to our understanding of lobeliad evolution and geographic spread, but his claim regarding convergence appears to be invalid. Giant lobeliads in Hawaii and Africa represent paradigmatic examples of convergent evolution
Physiological heterogeneities in microbial populations and implications for physical stress tolerance
<p>Abstract</p> <p>Background</p> <p>Traditionally average values of the whole population are considered when analysing microbial cell cultivations. However, a typical microbial population in a bioreactor is heterogeneous in most phenotypes measurable at a single-cell level. There are indications that such heterogeneity may be unfavourable on the one hand (reduces yields and productivities), but also beneficial on the other hand (facilitates quick adaptation to new conditions - i.e. increases the robustness of the fermentation process). Understanding and control of microbial population heterogeneity is thus of major importance for improving microbial cell factory processes.</p> <p>Results</p> <p>In this work, a dual reporter system was developed and applied to map growth and cell fitness heterogeneities within budding yeast populations during aerobic cultivation in well-mixed bioreactors. The reporter strain, which was based on the expression of green fluorescent protein (GFP) under the control of the ribosomal protein RPL22a promoter, made it possible to distinguish cell growth phases by the level of fluorescence intensity. Furthermore, by exploiting the strong correlation of intracellular GFP level and cell membrane integrity it was possible to distinguish subpopulations with high and low cell membrane robustness and hence ability to withstand freeze-thaw stress. A strong inverse correlation between growth and cell membrane robustness was observed, which further supports the hypothesis that cellular resources are limited and need to be distributed as a trade-off between two functions: growth and robustness. In addition, the trade-off was shown to vary within the population, and the occurrence of two distinct subpopulations shifting between these two antagonistic modes of cell operation could be distinguished.</p> <p>Conclusions</p> <p>The reporter strain enabled mapping of population heterogeneities in growth and cell membrane robustness towards freeze-thaw stress at different phases of cell cultivation. The described reporter system is a valuable tool for understanding the effect of environmental conditions on population heterogeneity of microbial cells and thereby to understand cell responses during industrial process-like conditions. It may be applied to identify more robust subpopulations, and for developing novel strategies for strain improvement and process design for more effective bioprocessing.</p
Patterns of plant naturalization show that facultative mycorrhizal plants are more likely to succeed outside their native Eurasian ranges
The naturalization of an introduced species is a key stage during the invasion process. Therefore, identifying the traits that favor the naturalization of non-native species can help understand why some species are more successful when introduced to new regions. The ability and the requirement of a plant species to form a mutualism with mycorrhizal fungi, together with the types of associations formed may play a central role in the naturalization success of different plant species. To test the relationship between plant naturalization success and their mycorrhizal associations we analysed a database composed of mycorrhizal status and type for 1981 species, covering 155 families and 822 genera of plants from Europe and Asia, and matched it with the most comprehensive database of naturalized alien species across the world (GloNAF). In mainland regions, we found that the number of naturalized regions was highest for facultative mycorrhizal, followed by obligate mycorrhizal and lowest for non-mycorrhizal plants, suggesting that the ability of forming mycorrhizas is an advantage for introduced plants. We considered the following mycorrhizal types: arbuscular, ectomycorrhizal, ericoid and orchid mycorrhizal plants. Further, dual mycorrhizal species were those that included observations of arbuscular mycorrhizas as well as observations of ectomycorrhizas. Naturalization success (based on the number of naturalized regions) was highest for arbuscular mycorrhizal and dual mycorrhizal plants, which may be related to the low host specificity of arbuscular mycorrhizal fungi and the consequent high availability of arbuscular mycorrhizal fungal partners. However, these patterns of naturalization success were erased in islands, suggesting that the ability to form mycorrhizas may not be an advantage for establishing self-sustaining populations in isolated regions. Taken together our results show that mycorrhizal status and type play a central role in the naturalization process of introduced plants in many regions, but that their effect is modulated by other factorsFil: Moyano, Jaime. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; ArgentinaFil: Dickie, Ian. University of Canterbury; Nueva ZelandaFil: Rodriguez Cabal, Mariano Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; ArgentinaFil: Nuñez, Martin Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentin
Non-inhibitory levels of oxygen during cultivation increase freeze-drying stress tolerance in Limosilactobacillus reuteri DSM 17938
The physiological effects of oxygen on Limosilactobacillus reuteri DSM 17938 during cultivation and the ensuing properties of the freeze-dried probiotic product was investigated. On-line flow cytometry and k-means clustering gating was used to follow growth and viability in real time during cultivation. The bacterium tolerated aeration at 500mL/min, with a growth rate of 0.74 +/- 0.13h(-1) which demonstrated that low levels of oxygen did not influence the growth kinetics of the bacterium. Modulation of the redox metabolism was, however, seen already at non-inhibitory oxygen levels by 1.5-fold higher production of acetate and 1.5-fold lower ethanol production. A significantly higher survival rate in the freeze-dried product was observed for cells cultivated in presence of oxygen compared to absence of oxygen (61.8%+/- 2.4% vs. 11.5%+/- 4.3%), coinciding with a higher degree of unsaturated fatty acids (UFA:SFA ratio of 10 for air sparged vs. 3.59 for N-2 sparged conditions.). Oxygen also resulted in improved bile tolerance and boosted 5 ' nucleotidase activity (370U/L vs. 240U/L in N-2 sparged conditions) but lower tolerance to acidic conditions compared bacteria grown under complete anaerobic conditions which survived up to 90min of exposure at pH 2. Overall, our results indicate the controlled supply of oxygen during production may be used as means for probiotic activity optimization of L. reuteri DSM 17938
Explaining Long-Distance Dispersal: Effects of Dispersal Distance on Survival and Growth in a Stream Salamander
Long-distance dispersal (LDD) may contribute disproportionately to range expansions, the creation of new evolutionary lineages, and species persistence in human-dominated landscapes. However, because data on the individual consequences of dispersal distance are extremely limited, we have little insight on how LDD is maintained in natural populations. I used six years of spatially explicit capture–mark–recapture (CMR) data to test the prediction that individual performance increases with dispersal distance in the stream salamander Gyrinophilus porphyriticus. Dispersal distance was total distance moved along the 1-km study stream, ranging from 0 to 565 m. To quantify individual performance, I used CMR estimates of survival and individual growth rates based on change in body length. Survival and growth rates increased significantly with dispersal distance. These relationships were not confounded by pre-dispersal body condition or by ecological gradients along the stream. Individual benefits of LDD were likely caused by an increase in the upper limit of settlement site quality with dispersal distance. My results do not support the view that the fitness consequences of LDD are unpredictable and instead suggest that consistent evolutionary mechanisms may explain the prevalence of LDD in nature. They also highlight the value of direct CMR data for understanding the individual consequences of variation in dispersal distance and how that variation is maintained in natural populations
Non-inhibitory levels of oxygen during cultivation increase freeze-drying stress tolerance in Limosilactobacillus reuteri DSM 17938
The physiological effects of oxygen on Limosilactobacillus reuteri DSM 17938 during cultivation and the ensuing properties of the freeze-dried probiotic product was investigated. On-line flow cytometry and k-means clustering gating was used to follow growth and viability in real time during cultivation. The bacterium tolerated aeration at 500 ml/min, with a growth rate of 0.74 ± 0.13 h-1 which demonstrated that low levels of oxygen did not influence the growth kinetics of the bacterium. Modulation of the redox metabolism was, however, seen already at non-inhibitory oxygen levels by 1.5-fold higher production of acetate and 1.5-fold lower ethanol production. A significantly higher survival rate in the freeze-dried product was observed for cells cultivated in presence of oxygen compared to absence of oxygen (61.8 ± 2.4 % vs 11.5 ± 4.3 %), coinciding with a higher degree of unsaturated fatty acids (UFA:SFA ratio of 10 for air sparged vs 3.59 for N2 sparged conditions.). Oxygen also resulted in improved bile tolerance and boosted 5’nucleotidase activity (370 U/L vs 240 U/L in N2 sparged conditions) but lower tolerance to acidic conditions compared bacteria grown under complete anaerobic conditions which survived up to 90 min of exposure at pH 2. Overall, our results indicate the controlled supply of oxygen during production may be used as means for probiotic activity optimisation of L. reuteri DSM 17938
- …