5,585 research outputs found

    Manual for extending the laser specklegram technique to strain analysis of rotating components

    Get PDF
    The theory, techniques, and equipment necessary for extending laser speckle techniques to analyze stresses in rotating blades are described. Details for setting up the equipment, for timing the events, for data recording, and for data analysis are discussed. Finite element techniques are investigated for analysis of speckle data. Advantages and limitations of the finite element analysis for the speckle data are discussed. The finite element program is listed

    Development of basic theories and techniques for determining stresses in rotating turbine or compressor blades

    Get PDF
    A method for measuring in-plane displacement of a rotating structure by using two laser speckle photographs is described. From the displacement measurements one can calculate strains and stresses due to a centrifugal load. This technique involves making separate speckle photographs of a test model. One photograph is made with the model loaded (model is rotating); the second photograph is made with no load on the model (model is stationary). A sandwich is constructed from the two speckle photographs and data are recovered in a manner similar to that used with conventional speckle photography. The basic theory, experimental procedures of this method, and data analysis of a simple rotating specimen are described. In addition the measurement of in-plane surface displacement components of a deformed solid, and the application of the coupled laser speckle interferometry and boundary-integral solution technique to two dimensional elasticity problems are addressed

    Dynamical mean-field equations for strongly interacting fermionic atoms in a potential trap

    Full text link
    We derive a set of dynamical mean-field equations for strongly interacting fermionic atoms in a potential trap across a Feshbach resonance. Our derivation is based on a variational ansatz, which generalizes the crossover wavefunction to the inhomogeneous case, and the assumption that the order parameter is slowly varying over the size of the Cooper pairs. The equations reduce to a generalized time-dependent Gross-Pitaevskii equation on the BEC side of the resonance. We discuss an iterative method to solve these mean-field equations, and present the solution for a harmonic trap as an illustrating example to self-consistently verify the approximations made in our derivation.Comment: replaced with the published versio

    Searching for Perfect Fluids: Quantum Viscosity in a Universal Fermi Gas

    Full text link
    We measure the shear viscosity in a two-component Fermi gas of atoms, tuned to a broad s-wave collisional (Feshbach) resonance. At resonance, the atoms strongly interact and exhibit universal behavior, where the equilibrium thermodynamic properties and the transport coefficients are universal functions of the density nn and temperature TT. We present a new calibration of the temperature as a function of global energy, which is directly measured from the cloud profiles. Using the calibration, the trap-averaged shear viscosity in units of n\hbar\,n is determined as a function of the reduced temperature at the trap center, from nearly the ground state to the unitary two-body regime. Low temperature data is obtained from the damping rate of the radial breathing mode, while high temperature data is obtained from hydrodynamic expansion measurements. We also show that the best fit to the high temperature expansion data is obtained for a vanishing bulk viscosity. The measured trap-averaged entropy per particle and shear viscosity are used to estimate the ratio of the shear viscosity to the entropy density, which is compared that conjectured for a perfect fluid.Comment: 20 pages, 10 figure

    A Spectral Method for Elliptic Equations: The Neumann Problem

    Full text link
    Let Ω\Omega be an open, simply connected, and bounded region in Rd\mathbb{R}^{d}, d2d\geq2, and assume its boundary Ω\partial\Omega is smooth. Consider solving an elliptic partial differential equation Δu+γu=f-\Delta u+\gamma u=f over Ω\Omega with a Neumann boundary condition. The problem is converted to an equivalent elliptic problem over the unit ball BB, and then a spectral Galerkin method is used to create a convergent sequence of multivariate polynomials unu_{n} of degree n\leq n that is convergent to uu. The transformation from Ω\Omega to BB requires a special analytical calculation for its implementation. With sufficiently smooth problem parameters, the method is shown to be rapidly convergent. For uC(Ω)u\in C^{\infty}(\overline{\Omega}) and assuming Ω\partial\Omega is a CC^{\infty} boundary, the convergence of uunH1\Vert u-u_{n}\Vert_{H^{1}} to zero is faster than any power of 1/n1/n. Numerical examples in R2\mathbb{R}^{2} and R3\mathbb{R}^{3} show experimentally an exponential rate of convergence.Comment: 23 pages, 11 figure

    Imbalanced Superfluid Phase of a Trapped Fermi Gas in the BCS-BEC Crossover Regime

    Full text link
    We theoretically investigate the ground state of trapped neutral fermions with population imbalance in the BCS-BEC crossover regime. On the basis of the single-channel Hamiltonian, we perform full numerical calculations of the Bogoliubov-de Gennes equation coupled with the regularized gap and number equations. The zero-temperature phase diagram in the crossover regime is presented, where the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) pairing state governs the weak-coupling BCS region of a resonance. It is found that the FFLO oscillation vanishes in the BEC side, in which the system under population imbalance turns into a phase separation (PS) between locally binding superfluid and fully polarized spin domains. We also demonstrate numerical calculations with a large particle number O(10^5), comparable to that observed in recent experiments. The resulting density profile on a resonance yields the PS, which is in good agreement with the recent experiments, while the FFLO modulation exists in the pairing field. It is also proposed that the most favorable location for the detection of the FFLO oscillation is in the vicinity of the critical population imbalance in the weak coupling BCS regime, where the oscillation periodicity becomes much larger than the interparticle spacing. Finally, we analyze the radio-frequency (RF) spectroscopy in the imbalanced system. The clear difference in the RF spectroscopy between BCS and BEC sides reveals the structure of the pairing field and local ``magnetization''.Comment: 16 pages, 13 figures, replaced by the version to appear in J. Phys. Soc. Jp

    Quantum transport in ultracold atoms

    Full text link
    Ultracold atoms confined by engineered magnetic or optical potentials are ideal systems for studying phenomena otherwise difficult to realize or probe in the solid state because their atomic interaction strength, number of species, density, and geometry can be independently controlled. This review focuses on quantum transport phenomena in atomic gases that mirror and oftentimes either better elucidate or show fundamental differences with those observed in mesoscopic and nanoscopic systems. We discuss significant progress in performing transport experiments in atomic gases, contrast similarities and differences between transport in cold atoms and in condensed matter systems, and survey inspiring theoretical predictions that are difficult to verify in conventional setups. These results further demonstrate the versatility offered by atomic systems in the study of nonequilibrium phenomena and their promise for novel applications.Comment: 24 pages, 7 figures. A revie
    corecore