9,809 research outputs found
Impact-picture predictions for the total cross section at LEP
We show that the rising total cross section recently observed by the L3 and OPAL Collaborations at LEP are fully
consistent with the impact-picture for high-energy scattering. The impact
picture is then used to predict this total cross section at higher energies.
These experimental results confirm once more the success of the theoretical
approach, which predicted for the first time, nearly thirty years ago, the
universal increase of total cross sections at high energies.Comment: 5 pages, Latex, 1 figure. Revised versio
A study of longitudinal oscillations of propellant tanks and wave propagations in feed lines. Part 1 - Propagating pressure waves in a fluid-filled cylindrical shell
Theory and equations for propagating pressure waves in liquid filled cylindrical shell
Micro heat exchanger by using MEMS impinging jets
A micro impinging-jet heat exchanger is presented here. Heat transfer is studied for single jet, slot arrays and jet arrays. In order to facilitate micro heat transfer measurements with these devices, a MEMS sensor chip, which has an 8 x 8 temperature-sensor array on one side, and an integrated heater on the other side has been designed and fabricated. This sensor chip allows 2-D surface temperature
measurement with various jets impinging on it. It is
found that micro impinging jets can be highly efficient when compared to existing macro impinging-jet microelectronics packages such as IBM 4381. For example, using a single nozzle jet (500-Όm diameter driven by 5 psig pressure), the sensor chip (2 x 2 cm^2) temperature can be cooled down from 70 to 33°C. The cooling becomes more efficient when
nozzle arrays (4x5 over 1 cm^2 area) are used under
the same driving pressure. Interestingly, although
higher driving pressure gives better cooling (lower
surface temperature), the cooling efficiency, defined
as h/0.5pv^2, is actually higher for lower driving
pressure
Complete gradient-LC-ESI system on a chip for protein analysis
This paper presents the first fully integrated gradient-elution liquid chromatography-electrospray ionization (LC-ESI) system on a chip. This chip integrates a pair of high-pressure gradient pumps, a sample injection pump, a passive mixer, a packed separation column, and an ESI nozzle. We also present the successful on-chip separation of protein digests by reverse phase (RP)-LC coupled with on-line mass spectrometer (MS) analysis
Integrated parylene-cabled silicon probes for neural prosthetics
Recent advances in the field of neural prosthetics have demonstrated the thought control of a computer cursor. This capability relies primarily on electrode array surgically implanted into the brain as an acquisition source of neural activity. Various technologies have been developed for signal extraction; however most suffer from either fragile electrode shanks and bulky cables or inefficient use of surgical site areas. Here we present a design and initial testing results from high electrode density, silicon based arrays system with an integrated parylene cable. The greatly reduced flexible rigidity of the parylene cable is believed to relief possible mechanical damages due to relative motion between a brain and its skull
Electrolysis-based diaphragm actuators
This work presents a new electrolysis-based microelectromechanical systems (MEMS) diaphragm actuator. Electrolysis is a technique for converting electrical energy to pneumatic energy. Theoretically electrolysis can achieve a strain of 136 000% and is capable of generating a pressure above 200 MPa. Electrolysis actuators require modest electrical power and produce minimal heat. Due to the large volume expansion obtained via electrolysis, small actuators can create a large force. Up to 100 ”m of movement was achieved by a 3 mm diaphragm. The actuator operates at room temperature and has a latching and reversing capability
A suspended microchannel with integrated temperature sensors for high-pressure flow studies
A freestanding microchannel, with integrated temperature sensors, has been developed for high-pressure flow studies. These microchannels are approximately 20ÎŒm x 2ÎŒm x 4400ÎŒm, and are suspended above 80 ÎŒm deep cavities, bulk micromachined using BrF3 dry etch. The calibration of the lightly boron-doped thermistor-type sensors shows that the resistance sensitivity of these integrated sensors is parabolic with respect to temperature and linear with respect to pressure. Volumetric flow rates of N2 in the microchannel were measured at inlet pressures up to 578 psig. The discrepancy between the data and theory results from the flow acceleration in a channel, the non-parabolic velocity profile, and the bulging of the channel. Bulging effects were evaluated by using incompressible water flow measurements, which also measures 1.045x10^-3N-s/m^2 for the viscosity of DI water. The temperature data from sensors on the channel shows the heating of the channel due to the friction generated by the high-pressure flow inside
Recommended from our members
A micro-electro-mechanical-system-based thermal shear-stress sensor with self-frequency compensation
By applying the micro-electro-mechanical-system (MEMS) fabrication technology, we developed a micro-thermal sensor to measure surface shear stress. The heat transfer from a polysilicon heater depends on the normal velocity gradient and thus provides the surface shear stress. However, the sensitivity of the shear-stress measurements in air is less than desirable due to the low heat capacity of air. A unique feature of this micro-sensor is that the heating element, a film 1 ”m thick, is separated from the substrate by a vacuum cavity 2 ”m thick. The vacuum cavity prevents the conduction of heat to the substrate and therefore improves the sensitivity by an order of magnitude. Owing to the low thermal inertia of the miniature sensing element, this shear-stress micro-sensor can provide instantaneous measurements of small-scale turbulence. Furthermore, MEMS technology allows us make multiple sensors on a single chip so that we can perform distributed measurements. In this study, we use multiple polysilicon sensor elements to improve the dynamic performance of the sensor itself. It is demonstrated that the frequency-response range of a constant-current sensor can be extended from the order of 100 Hz to 100 kHz
Supersymmetric Mean-Field Theory of t-J Model
The supersymmetric formulation of t-J model is studied in this paper at the
mean-field level where -T phase diagram is computed. We find that
slave-fermion-like spiral phase is stable at low doping concentration, and the
slave-boson-like d-wave fermionic spin pairing state becomes energetically
favourable when 0.23. An improvement in free energy using
Gutzwiller's method lowers the transition doping concentration to 0.06. We also
point out the existence of new branches of excitations in the supersymmetric
theory.Comment: 11 pages and 2 figure
- âŠ