98 research outputs found

    On the propagation of an optical wave in a photorefractive medium

    Full text link
    The aim of this paper is first to review the derivation of a model describing the propagation of an optical wave in a photorefractive medium and to present various mathematical results on this model: Cauchy problem, solitary waves

    Global well-posedness for the KP-I equation on the background of a non localized solution

    Full text link
    We prove that the Cauchy problem for the KP-I equation is globally well-posed for initial data which are localized perturbations (of arbitrary size) of a non-localized (i.e. not decaying in all directions) traveling wave solution (e.g. the KdV line solitary wave or the Zaitsev solitary waves which are localized in xx and yy periodic or conversely)

    A para-differential renormalization technique for nonlinear dispersive equations

    Full text link
    For \alpha \in (1,2) we prove that the initial-value problem \partial_t u+D^\alpha\partial_x u+\partial_x(u^2/2)=0 on \mathbb{R}_x\times\mathbb{R}_t; u(0)=\phi, is globally well-posed in the space of real-valued L^2-functions. We use a frequency dependent renormalization method to control the strong low-high frequency interactions.Comment: 42 pages, no figure

    Global generalized solutions for Maxwell-alpha and Euler-alpha equations

    Full text link
    We study initial-boundary value problems for the Lagrangian averaged alpha models for the equations of motion for the corotational Maxwell and inviscid fluids in 2D and 3D. We show existence of (global in time) dissipative solutions to these problems. We also discuss the idea of dissipative solution in an abstract Hilbert space framework.Comment: 27 pages, to appear in Nonlinearit

    The phase shift of line solitons for the KP-II equation

    Full text link
    The KP-II equation was derived by [B. B. Kadomtsev and V. I. Petviashvili,Sov. Phys. Dokl. vol.15 (1970), 539-541] to explain stability of line solitary waves of shallow water. Stability of line solitons has been proved by [T. Mizumachi, Mem. of vol. 238 (2015), no.1125] and [T. Mizumachi, Proc. Roy. Soc. Edinburgh Sect. A. vol.148 (2018), 149--198]. It turns out the local phase shift of modulating line solitons are not uniform in the transverse direction. In this paper, we obtain the LL^\infty-bound for the local phase shift of modulating line solitons for polynomially localized perturbations

    Adaptation of the generic PDE's results to the notion of prevalence

    Full text link
    Many generic results have been proved, especially concerning the qualitative behaviour of solutions of partial differential equations. Recently, a new notion of "almost always", the prevalence, has been developped for vectorial spaces. This notion is interesting since, for example, prevalence sets are equivalent to the full Lebesgue measure sets in finite dimensional spaces. The purpose of this article is to adapt the generic PDE's results to the notion of prevalence. In particular, we consider the cases where Sard-Smale theorems or arguments of analytic perturbations of the parameters are used
    corecore