50,377 research outputs found
The upper atmosphere
Energy transfer, and heat sinks and sources in upper atmosphere for composition and temperature behavio
Component research for future propulsion systems
Factors affecting the helicopter market are reviewed. The trade-offs involving acquisition cost, mission reliability, and life cycle cost are reviewed, including civil and military aspects. The potential for advanced vehicle configurations with substantial improvements in energy efficiency, operating economics, and characteristics to satisfy the demands of the future market are identified. Advanced propulsion systems required to support these vehicle configurations are discussed, as well as the component technology for the engine systems. Considerations for selection of components in areas of economics and efficiency are presented
Dynamics of the nighttime thermosphere at Arecibo
Incoherent scatter radar observations of the nighttime F layer at Arecibo, Puerto Rico, are used to determine the O+ diffusion velocity at different altitudes. Further analysis allows evaluation of the neutral wind and the ion-drag force in the direction of the magnetic meridian. The local acceleration of the meridional neutral wind is also determined. The possibility of evaluating the viscous force using incoherent scatter radar data was also investigated. Preliminary results indicate that, at certain times and at altitudes above about 350 km, viscous drag may be a significant term in the neutral equation of motion. Combining these results allows height profiles of the meridional pressure gradient to be deduced. The pressure gradients thus derived is compared with that determined from measurements of the horizontal temperature gradient and that given by the MSIS model atmosphere
National counter-terrorism (C-T) policies and challenges to human rights and civil liberties: Case study of United Kingdom
In the UK the rise post-2005 in “home-grown” terrorism, relying to a significant extent on strikes on soft targets by “self-starters,” means that the search for effective preventive measures remains a continuing concern. Below a number of the preventive counter-terror measures adopted post-9/11, and incrementally strengthened in response to the current threat, are found to fall into three categories and represent interventions at the stages in the path toward attacks. This chapter focuses on selected examples of these preventive measures. In terms of three key stages, firstly, there is the attempt to prevent radicalization, under the “Prevent” strategy. A second strategy relies on taking certain measures to control the activities of those considered likely – on the balance of probabilities – to engage in terrorist-related activity. A third preventive strategy relies on the special terrorism offences under the Terrorism Acts 2000 and 2006, as amended, intended to allow for intervention at a very early stage in terrorist plots and in preparing or instigating terrorist acts (“precursor” offences)
Molecular hydrogen in the young starburst in NGC 253
Shocked molecular hydrogen has been observed around the nucleus of the nearby galaxy, NGC 253. This galaxy has a relatively modest luminosity (approx. 3 x 10 to the 10th power solar luminosities) and appears to have no distortions or companions that would indicate a possible interaction. The energy of the galaxy appears to be derived primarily from a starburst. Thus, our observations have caused us to examine the starburst process in some detail to identify how the molecular hydrogen is excited. It is proposed that the molecular hydrogen emission is produced by collisions of dense molecular clouds accelerated by supernovae explosions. Within the nucleus, this process occurs early in the life of the starbust. This suggest a sequence of nuclear starburst development; examples along this sequence from young to old would include NGC 253, M82, NGC 1097, and M31
Development of acoustically lined ejector technology for multitube jet noise suppressor nozzles by model and engine tests over a wide range of jet pressure ratios and temperatures
An experimental program comprising model nozzle and full-scale engine tests was undertaken to acquire parametric data for acoustically lined ejectors applied to primary jet noise suppression. Ejector lining design technology and acoustical scaling of lined ejector configurations were the major objectives. Ground static tests were run with a J-75 turbojet engine fitted with a 37-tube, area ratio 3.3 suppressor nozzle and two lengths of ejector shroud (L/D = 1 and 2). Seven ejector lining configurations were tested over the engine pressure ratio range of 1.40 to 2.40 with corresponding jet velocities between 305 and 610 M/sec. One-fourth scale model nozzles were tested over a pressure ratio range of 1.40 to 4.0 with jet total temperatures between ambient and 1088 K. Scaling of multielement nozzle ejector configurations was also studied using a single element of the nozzle array with identical ejector lengths and lining materials. Acoustic far field and near field data together with nozzle thrust performance and jet aerodynamic flow profiles are presented
Tuning grid storage resources for LHC data analysis
Grid Storage Resource Management (SRM) and local file-system solutions are facing significant challenges to support efficient analysis of the data now being produced at the Large Hadron Collider (LHC). We compare the performance of different storage technologies at UK grid sites examining the effects of tuning and recent improvements in the I/O patterns of experiment software. Results are presented for both live production systems and technologies not currently in widespread use. Performance is studied using tests, including real LHC data analysis, which can be used to aid sites in deploying or optimising their storage configuration
A Statistical Description of AGN Jet Evolution from the VLBA Imaging and Polarimetry Survey (VIPS)
A detailed analysis of the evolution of the properties of core-jet systems
within the VLBA Imaging and Polarimetry Survey (VIPS) is presented. We find a
power-law relationship between jet intensity and width that suggests for the
typical jet, little if any energy is lost as it moves away from its core. Using
VLA images at 1.5 GHz, we have found evidence that parsec-scale jets tend to be
aligned with the the direction of emission on kiloparsec scales. We also found
that this alignment improves as the jets move farther from their cores on
projected scales as small as ~50-100 pc. This suggests that realignment of jets
on these projected scales is relatively common. We typically find a modest
amount of bending (a change in jet position angle of ~5 deg.) on these scales,
suggesting that this realignment may typically occur relatively gradually.Comment: Accepted to ApJ, 20 pages, 8 figure
- …