11,872 research outputs found
Resolving Architectural Mismatches of COTS Through Architectural Reconciliation
The integration of COTS components into a system under development entails architectural mismatches. These have been tackled, so far, at the component level, through component adaptation techniques, but they also must be tackled at an architectural level of abstraction. In this paper we propose an approach for resolving architectural mismatches, with the aid of architectural reconciliation. The approach consists of designing and subsequently reconciling two architectural models, one that is forward-engineered from the requirements and another that is reverse-engineered from the COTS-based implementation. The final reconciled model is optimally adapted both to the requirements and to the actual COTS-based implementation. The contribution of this paper lies in the application of architectural reconciliation in the context of COTS-based software development. Architectural modeling is based upon the UML 2.0 standard, while the reconciliation is performed by transforming the two models, with the help of architectural design decisions.
Relative Riemann-Zariski spaces
In this paper we study relative Riemann-Zariski spaces attached to a morphism
of schemes and generalizing the classical Riemann-Zariski space of a field. We
prove that similarly to the classical RZ spaces, the relative ones can be
described either as projective limits of schemes in the category of locally
ringed spaces or as certain spaces of valuations. We apply these spaces to
prove the following two new results: a strong version of stable modification
theorem for relative curves; a decomposition theorem which asserts that any
separated morphism between quasi-compact and quasi-separated schemes factors as
a composition of an affine morphism and a proper morphism. (In particular, we
obtain a new proof of Nagata's compactification theorem.)Comment: 30 pages, the final version, to appear in Israel J. of Mat
Reconstructing the Initial Density Field of the Local Universe: Method and Test with Mock Catalogs
Our research objective in this paper is to reconstruct an initial linear
density field, which follows the multivariate Gaussian distribution with
variances given by the linear power spectrum of the current CDM model and
evolves through gravitational instability to the present-day density field in
the local Universe. For this purpose, we develop a Hamiltonian Markov Chain
Monte Carlo method to obtain the linear density field from a posterior
probability function that consists of two components: a prior of a Gaussian
density field with a given linear spectrum, and a likelihood term that is given
by the current density field. The present-day density field can be
reconstructed from galaxy groups using the method developed in Wang et al.
(2009a). Using a realistic mock SDSS DR7, obtained by populating dark matter
haloes in the Millennium simulation with galaxies, we show that our method can
effectively and accurately recover both the amplitudes and phases of the
initial, linear density field. To examine the accuracy of our method, we use
-body simulations to evolve these reconstructed initial conditions to the
present day. The resimulated density field thus obtained accurately matches the
original density field of the Millennium simulation in the density range 0.3 <=
rho/rho_mean <= 20 without any significant bias. Especially, the Fourier phases
of the resimulated density fields are tightly correlated with those of the
original simulation down to a scale corresponding to a wavenumber of ~ 1 h/Mpc,
much smaller than the translinear scale, which corresponds to a wavenumber of ~
0.15 h\Mpc.Comment: 43 pages, 15 figures, accepted for publication in Ap
Properties of Galaxy Groups in the SDSS: I.-- The Dependence of Colour, Star Formation, and Morphology on Halo Mass
Using a large galaxy group catalogue constructed from the SDSS, we
investigate the correlation between various galaxy properties and halo mass. We
split the population of galaxies in early types, late types, and intermediate
types, based on their colour and specific star formation rate. At fixed
luminosity, the early type fraction increases with increasing halo mass. Most
importantly, this mass dependence is smooth and persists over the entire mass
range probed, without any break or feature at any mass scale. We argue that the
previous claim of a characteristic feature on galaxy group scales is an
artefact of the environment estimators used. At fixed halo mass, the luminosity
dependence of the type fractions is surprisingly weak: galaxy type depends more
strongly on halo mass than on luminosity. We also find that the early type
fraction decreases with increasing halo-centric radius. Contrary to previous
studies, we find that this radial dependence is also present in low mass
haloes. The properties of satellite galaxies are strongly correlated with those
of their central galaxy. In particular, the early type fraction of satellites
is significantly higher in a halo with an early type central galaxy than in a
halo of the same mass but with a late type central galaxy. This phenomenon,
which we call `galactic conformity', is present in haloes of all masses and for
satellites of all luminosities. Finally, the fraction of intermediate type
galaxies is always ~20 percent, independent of luminosity, independent of halo
mass, independent of halo-centric radius, and independent of whether the galaxy
is a central galaxy or a satellite galaxy. We discuss the implications of all
these findings for galaxy formation and evolution.Comment: 28 pages, 15 figures. Submitted for publication in MNRA
A Stellar Dynamical Mass Measurement of the Black Hole in NGC 3998 from Keck Adaptive Optics Observations
We present a new stellar dynamical mass measurement of the black hole in the
nearby, S0 galaxy NGC 3998. By combining laser guide star adaptive optics
observations obtained with the OH-Suppressing Infrared Imaging Spectrograph on
the Keck II telescope with long-slit spectroscopy from the Hubble Space
Telescope and the Keck I telescope, we map out the stellar kinematics on both
small spatial scales, well within the black hole sphere of influence, and on
large scales. We find that the galaxy is rapidly rotating and exhibits a sharp
central peak in the velocity dispersion. Using the kinematics and the stellar
luminosity density derived from imaging observations, we construct
three-integral, orbit-based, triaxial stellar dynamical models. We find the
black hole has a mass of M_BH = (8.1_{-1.9}^{+2.0}) x 10^8 M_sun, with an
I-band stellar mass-to-light ratio of M/L = 5.0_{-0.4}^{+0.3} M_sun/L_sun
(3-sigma uncertainties), and that the intrinsic shape of the galaxy is very
round, but oblate. With the work presented here, NGC 3998 is now one of a very
small number of galaxies for which both stellar and gas dynamical modeling have
been used to measure the mass of the black hole. The stellar dynamical mass is
nearly a factor of four larger than the previous gas dynamical black hole mass
measurement. Given that this cross-check has so far only been attempted on a
few galaxies with mixed results, carrying out similar studies in other objects
is essential for quantifying the magnitude and distribution of the cosmic
scatter in the black hole mass - host galaxy relations.Comment: 19 pages, 15 figures, accepted for publication in Ap
Observational Evidence for an Age Dependence of Halo Bias
We study the dependence of the cross-correlation between galaxies and galaxy
groups on group properties. Confirming previous results, we find that the
correlation strength is stronger for more massive groups, in good agreement
with the expected mass dependence of halo bias. We also find, however, that for
groups of the same mass, the correlation strength depends on the star formation
rate (SFR) of the central galaxy: at fixed mass, the bias of galaxy groups
decreases as the SFR of the central galaxy increases. We discuss these findings
in light of the recent findings by Gao et al (2005) that halo bias depends on
halo formation time, in that halos that assemble earlier are more strongly
biased. We also discuss the implication for galaxy formation, and address a
possible link to galaxy conformity, the observed correlation between the
properties of satellite galaxies and those of their central galaxy.Comment: 4 pages, 4 figures, Accepted for publication in ApJ Letters. Figures
3 and 4 replaced. The bias dependence on the central galaxy luminosity is
omitted due to its sensitivity to the mass mode
Effects of chronic exposure to the new insecticide sulfoxaflor in combination with a SDHI fungicide in a solitary bee
The recent EU ban of the three most widely used neonicotinoids (imidacloprid, thiamethoxam and clothianidin) to all outdoors applications has stimulated the introduction of new insecticides into the market. Sulfoxaflor is a new systemic insecticide that, like neonicotinoids, acts as a modulator of nicotinic acetylcholine receptors. In agro-environments, bees can be exposed to this compound via contaminated pollen and nectar for long periods of time. Therefore, it is important to assess the potential effects of chronic exposure to sulfoxaflor, alone and in combination with fungicides, on pollinators. In this study, we tested the effects of chronic exposure to two field concentrations of sulfoxaflor (20 and 100 ppb) alone and in combination with four concentrations of the fungicide fluxapyroxad (7500, 15,000, 30,000 and 60,000 ppb) on syrup consumption and longevity in females of the solitary bee Osmia bicornis L. Exposure to 20 ppb of sulfoxaflor, alone and in combination with the fungicide, stimulated syrup consumption, but did not affect longevity. In contrast, syrup consumption decreased in bees exposed to 100 ppb, all of which died after 2â6 days of exposure. We found no evidence of synergism between the two compounds at any of the two sulfoxaflor concentrations tested. Comparison of our findings with the literature, confirms that O. bicornis is more sensitive to sulfoxaflor than honey bees. Our results highlight the need to include different bee species in risk assessment schemes
Properties of Galaxy Groups in the SDSS: II.- AGN Feedback and Star Formation Truncation
Successfully reproducing the galaxy luminosity function and the bimodality in
the galaxy distribution requires a mechanism that can truncate star formation
in massive haloes. Current models of galaxy formation consider two such
truncation mechanisms: strangulation, which acts on satellite galaxies, and AGN
feedback, which predominantly affects central galaxies. The efficiencies of
these processes set the blue fraction of galaxies as function of galaxy
luminosity and halo mass. In this paper we use a galaxy group catalogue
extracted from the Sloan Digital Sky Survey (SDSS) to determine these
fractions. To demonstrate the potential power of this data as a benchmark for
galaxy formation models, we compare the results to the semi-analytical model
for galaxy formation of Croton et al. (2006). Although this model accurately
fits the global statistics of the galaxy population, as well as the shape of
the conditional luminosity function, there are significant discrepancies when
the blue fraction of galaxies as a function of mass and luminosity is compared
between the observations and the model. In particular, the model predicts (i)
too many faint satellite galaxies in massive haloes, (ii) a blue fraction of
satellites that is much too low, and (iii) a blue fraction of centrals that is
too high and with an inverted luminosity dependence. In the same order, we
argue that these discrepancies owe to (i) the neglect of tidal stripping in the
semi-analytical model, (ii) the oversimplified treatment of strangulation, and
(iii) improper modeling of dust extinction and/or AGN feedback. The data
presented here will prove useful to test and calibrate future models of galaxy
formation and in particular to discriminate between various models for AGN
feedback and other star formation truncation mechanisms.Comment: 16 pages, 5 figures, submitted to MNRA
Alignments of galaxies within cosmic filaments from SDSS DR7
Using a sample of galaxy groups selected from the Sloan Digital Sky Survey
Data Release 7 (SDSS DR7), we examine the alignment between the orientation of
galaxies and their surrounding large scale structure in the context of the
cosmic web. The latter is quantified using the large-scale tidal field,
reconstructed from the data using galaxy groups above a certain mass threshold.
We find that the major axes of galaxies in filaments tend to be preferentially
aligned with the directions of the filaments, while galaxies in sheets have
their major axes preferentially aligned parallel to the plane of the sheets.
The strength of this alignment signal is strongest for red, central galaxies,
and in good agreement with that of dark matter halos in N-body simulations.
This suggests that red, central galaxies are well aligned with their host
halos, in quantitative agreement with previous studies based on the spatial
distribution of satellite galaxies. There is a luminosity and mass dependence
that brighter and more massive galaxies in filaments and sheets have stronger
alignment signals. We also find that the orientation of galaxies is aligned
with the eigenvector associated with the smallest eigenvalue of the tidal
tensor. These observational results indicate that galaxy formation is affected
by large-scale environments, and strongly suggests that galaxies are aligned
with each other over scales comparable to those of sheets and filaments in the
cosmic web.Comment: 11 pages, 10 figures, accepted for publication in Ap
- âŠ