34,051 research outputs found

    Staggered Chiral Perturbation Theory for Heavy-Light Mesons

    Full text link
    We incorporate heavy-light mesons into staggered chiral perturbation theory, working to leading order in 1/m_Q, where m_Q is the heavy quark mass. At first non-trivial order in the chiral expansion, staggered taste violations affect the chiral logarithms for heavy-light quantities only through the light meson propagators in loops. There are also new analytic contributions coming from additional terms in the Lagrangian involving heavy-light and light mesons. Using this heavy-light staggered chiral perturbation theory, we perform the one-loop calculation of the B (or D) meson leptonic decay constant in the partially quenched and full QCD cases. In our treatment, we assume the validity both of the "fourth root trick" to reduce four staggered tastes to one, and of the prescription to represent this trick in the chiral theory by insertions of factors of 1/4 for each sea quark loop.Comment: 48 pages, 6 figures. v3: Some clarifying comments/caveats added; typos fixed. Corresponds to published versio

    Comparing Parts with the Whole: Willingness to Pay for Pesticide-Free, Non-GM, and Organic Potatoes and Sweet Corn

    Get PDF
    Auction experiments were used to investigate demand relationships and willingness to pay (WTP) for four versions of potatoes and sweet corn—conventional, organic, and two parts of organic: no pesticides and non-genetically modified (non-GM). Elasticities showed strong and asymmetric substitute relationships between organic and its parts. Combined premiums of the parts were not significantly different than the whole organic premium, suggesting WTP for the attributes are not additive. A two-stage heteroskedastic tobit model found significant WTP for each part dependent on demographics and beliefs about conventional versions. Results suggest segments for parts of organic could be established alongside the whole.auction experiments, organic, pesticides, potatoes, sweet corn, willingness to pay, Demand and Price Analysis, Livestock Production/Industries,

    Heavy-Light Semileptonic Decays in Staggered Chiral Perturbation Theory

    Full text link
    We calculate the form factors for the semileptonic decays of heavy-light pseudoscalar mesons in partially quenched staggered chiral perturbation theory (\schpt), working to leading order in 1/mQ1/m_Q, where mQm_Q is the heavy quark mass. We take the light meson in the final state to be a pseudoscalar corresponding to the exact chiral symmetry of staggered quarks. The treatment assumes the validity of the standard prescription for representing the staggered ``fourth root trick'' within \schpt by insertions of factors of 1/4 for each sea quark loop. Our calculation is based on an existing partially quenched continuum chiral perturbation theory calculation with degenerate sea quarks by Becirevic, Prelovsek and Zupan, which we generalize to the staggered (and non-degenerate) case. As a by-product, we obtain the continuum partially quenched results with non-degenerate sea quarks. We analyze the effects of non-leading chiral terms, and find a relation among the coefficients governing the analytic valence mass dependence at this order. Our results are useful in analyzing lattice computations of form factors BπB\to\pi and DKD\to K when the light quarks are simulated with the staggered action.Comment: 53 pages, 8 figures, v2: Minor correction to the section on finite volume effects, and typos fixed. Version to be published in Phys. Rev.

    Estimation of Sorting Time for Arthropod Samples Collected with Tullgren Funnels

    Get PDF
    Arthropods were sorted from samples obtained with Tullgren funnels. Each sorter maintained a log of time per session and arthropods removed per session. Five individuals removed all arthropods from 12 separate samples and sorted them into previously designated class or ordinal taxa. Each sample was sorted by a single student. Students were allowed to develop their own approaches to sorting and do it as time permitted. Mean sorting rate per sample was 2.43 arthropods per minute, with a range of 1.42-5.64, while mean sorting rate for a sorting session was 3.41 specimens per minute. Specimen density was only weakly correlated with sort time. Fatigue did not appear to be a major factor in sorting rate, as indicated by the similarity of the linear and quadratic coefficients of determination for each sample

    Semileptonic Kaon Decay in Staggered Chiral Perturbation Theory

    Full text link
    The determination of Vus\vert V_{us}\vert from kaon semileptonic decays requires the value of the form factor f+(q2=0)f_+(q^2=0), which can be calculated precisely on the lattice. We provide the one-loop partially quenched staggered chiral perturbation theory expressions that may be employed to analyze staggered simulations of f+(q2)f_+(q^2) with three light flavors. We consider both the case of a mixed action, where the valence and sea sectors have different staggered actions, and the standard case where these actions are the same. The momentum transfer q2q^2 of the form factor is allowed to have an arbitrary value. We give results for the generic situation where the uu, dd, and ss quark masses are all different, Nf=1+1+1N_f=1+1+1, and for the isospin limit, Nf=2+1N_f=2+1. The expression we obtain for f+(q2)f_+(q^2) is independent of the mass of the (valence) spectator quark. In the limit of vanishing lattice spacing, our results reduce to the one-loop continuum partially quenched expression for f+(q2)f_+(q^2), which has not previously been reported in the literature for the Nf=1+1+1N_f=1+1+1 case. Our expressions have already been used in staggered lattice analyses of f+(0)f_+(0), and should prove useful in future calculations as well.Comment: 33 pages, 5 figures; v2: some referencing change

    Staggered Chiral Perturbation Theory and the Fourth-Root Trick

    Full text link
    Staggered chiral perturbation theory (schpt) takes into account the "fourth-root trick" for reducing unwanted (taste) degrees of freedom with staggered quarks by multiplying the contribution of each sea quark loop by a factor of 1/4. In the special case of four staggered fields (four flavors, nF=4), I show here that certain assumptions about analyticity and phase structure imply the validity of this procedure for representing the rooting trick in the chiral sector. I start from the observation that, when the four flavors are degenerate, the fourth root simply reduces nF=4 to nF=1. One can then treat nondegenerate quark masses by expanding around the degenerate limit. With additional assumptions on decoupling, the result can be extended to the more interesting cases of nF=3, 2, or 1. A apparent paradox associated with the one-flavor case is resolved. Coupled with some expected features of unrooted staggered quarks in the continuum limit, in particular the restoration of taste symmetry, schpt then implies that the fourth-root trick induces no problems (for example, a violation of unitarity that persists in the continuum limit) in the lowest energy sector of staggered lattice QCD. It also says that the theory with staggered valence quarks and rooted staggered sea quarks behaves like a simple, partially-quenched theory, not like a "mixed" theory in which sea and valence quarks have different lattice actions. In most cases, the assumptions made in this paper are not only sufficient but also necessary for the validity of schpt, so that a variety of possible new routes for testing this validity are opened.Comment: 39 pages, 3 figures. v3: minor changes: improved explanations and less tentative discussion in several places; corresponds to published versio

    \u3ci\u3eCryptopygus Bipunctatus\u3c/i\u3e (Collembola: Isotomidae) in North America, and \u3ci\u3eC. Posteroculatus\u3c/i\u3e N. Comb.

    Get PDF
    Specimens of Cryptopygus bipunctatus are reported and described from North America (Michigan) for the first time. The species is easily recognized by its lack of color, one pair of ocelli on black eyespots, and one flair of ventral manubrial setae. Michigan and European specimens are very· similar. A very similar Polish species, Isotomina posteroculata, is transferred to Cryptopygus

    A note on the power divergence in lattice calculations of ΔI=1/2\Delta I = 1/2 KππK\to\pi\pi amplitudes at MK=MπM_{K}=M_{\pi}

    Get PDF
    In this note, we clarify a point concerning the power divergence in lattice calculations of ΔI=1/2\Delta I = 1/2 KππK\to\pi\pi decay amplitudes. There have been worries that this divergence might show up in the Minkowski amplitudes at MK=MπM_{K}=M_{\pi} with all the mesons at rest. Here we demonstrate, via an explicit calculation in leading-order Chiral Perturbation Theory, that the power divergence is absent at the above kinematic point, as predicted by CPS symmetry.Comment: 5 pages, 2 figure

    Analytic estimates for penguin operators in quenched QCD

    Full text link
    Strong penguin operators are singlets under the right-handed flavor symmetry group SU(3)_R. However, they do not remain singlets when the operator is embedded in (partially) quenched QCD, but instead they become linear combinations of two operators with different transformation properties under the (partially) quenched symmetry group. This is an artifact of the quenched approximation. Each of these two operators is represented by a different set of low-energy constants in the chiral effective theory. In this paper, we give analytic estimates for the leading low-energy constants, in quenched and partially quenched QCD. We conclude that the effects of quenching on Q_6 are large.Comment: 6 pages. Typo fixed and an explanatory footnote adde

    A Lattice Study of the Gluon Propagator in Momentum Space

    Full text link
    We consider pure glue QCD at beta=5.7, beta=6.0 and beta=6.3. We evaluate the gluon propagator both in time at zero 3-momentum and in momentum space. From the former quantity we obtain evidence for a dynamically generated effective mass, which at beta=6.0 and beta=6.3 increases with the time separation of the sources, in agreement with earlier results. The momentum space propagator G(k) provides further evidence for mass generation. In particular, at beta=6.0, for k less than 1 GeV, the propagator G(k) can be fit to a continuum formula proposed by Gribov and others, which contains a mass scale b, presumably related to the hadronization mass scale. For higher momenta Gribov's model no longer provides a good fit, as G(k) tends rather to follow an inverse power law. The results at beta=6.3 are consistent with those at beta=6.0, but only the high momentum region is accessible on this lattice. We find b in the range of three to four hundred MeV and the exponent of the inverse power law about 2.7. On the other hand, at beta=5.7 (where we can only study momenta up to 1 GeV) G(k) is best fit to a simple massive boson propagator with mass m. We argue that such a discrepancy may be related to a lack of scaling for low momenta at beta=5.7. {}From our results, the study of correlation functions in momentum space looks promising, especially because the data points in Fourier space turn out to be much less correlated than in real space.Comment: 19 pages + 12 uuencoded PostScript picture
    corecore