19 research outputs found

    Using Light to Improve Commercial Value

    Get PDF
    The plasticity of plant morphology has evolved to maximize reproductive fitness in response to prevailing environmental conditions. Leaf architecture elaborates to maximize light harvesting, while the transition to flowering can either be accelerated or delayed to improve an individual's fitness. One of the most important environmental signals is light, with plants using light for both photosynthesis and as an environmental signal. Plants perceive different wavelengths of light using distinct photoreceptors. Recent advances in LED technology now enable light quality to be manipulated at a commercial scale, and as such opportunities now exist to take advantage of plants' developmental plasticity to enhance crop yield and quality through precise manipulation of a crops' lighting regime. This review will discuss how plants perceive and respond to light, and consider how these specific signaling pathways can be manipulated to improve crop yield and quality

    Upstream regulatory architecture of rice genes: summarizing the baseline towards genus-wide comparative analysis of regulatory networks and allele mining

    Get PDF

    Strictissimi Juris

    No full text

    Impact of long COVID on health-related quality-of-life: an OpenSAFELY population cohort study using patient-reported outcome measures (OpenPROMPT)Research in context

    No full text
    Summary: Background: Long COVID is a major problem affecting patient health, the health service, and the workforce. To optimise the design of future interventions against COVID-19, and to better plan and allocate health resources, it is critical to quantify the health and economic burden of this novel condition. We aimed to evaluate and estimate the differences in health impacts of long COVID across sociodemographic categories and quantify this in Quality-Adjusted Life-Years (QALYs), widely used measures across health systems. Methods: With the approval of NHS England, we utilised OpenPROMPT, a UK cohort study measuring the impact of long COVID on health-related quality-of-life (HRQoL). OpenPROMPT invited responses to Patient Reported Outcome Measures (PROMs) using a smartphone application and recruited between November 2022 and October 2023. We used the validated EuroQol EQ-5D questionnaire with the UK Value Set to develop disutility scores (1-utility) for respondents with and without Long COVID using linear mixed models, and we calculated subsequent Quality-Adjusted Life-Months (QALMs) for long COVID. Findings: The total OpenPROMPT cohort consisted of 7575 individuals who consented to data collection, with which we used data from 6070 participants who completed a baseline research questionnaire where 24.6% self-reported long COVID. In multivariable regressions, long COVID had a consistent impact on HRQoL, showing a higher likelihood or odds of reporting loss in quality-of-life (Odds Ratio (OR): 4.7, 95% CI: 3.72–5.93) compared with people who did not report long COVID. Reporting a disability was the largest predictor of losses of HRQoL (OR: 17.7, 95% CI: 10.37–30.33) across survey responses. Self-reported long COVID was associated with an 0.37 QALM loss. Interpretation: We found substantial impacts on quality-of-life due to long COVID, representing a major burden on patients and the health service. We highlight the need for continued support and research for long COVID, as HRQoL scores compared unfavourably to patients with conditions such as multiple sclerosis, heart failure, and renal disease. Funding: This research was supported by the National Institute for Health and Care Research (NIHR) (OpenPROMPT: COV-LT2-0073)
    corecore