17 research outputs found

    1-methylnicotinamide and its structural analog 1,4-dimethylpyridine for the prevention of cancer metastasis

    Get PDF
    Background: 1-methylnicotinamide (1-MNA), an endogenous metabolite of nicotinamide, has recently gained interest due to its anti-inflammatory and anti-thrombotic activities linked to the COX-2/PGI2 pathway. Given the previously reported anti-metastatic activity of prostacyclin (PGI2), we aimed to assess the effects of 1-MNA and its structurally related analog, 1,4-dimethylpyridine (1,4-DMP), in the prevention of cancer metastasis. Methods: All the studies on the anti-tumor and anti-metastatic activity of 1-MNA and 1,4-DMP were conducted using the model of murine mammary gland cancer (4T1) transplanted either orthotopically or intravenously into female BALB/c mouse. Additionally, the effect of the investigated molecules on cancer cell-induced angiogenesis was estimated using the matrigel plug assay utilizing 4T1 cells as a source of pro-angiogenic factors. Results: Neither 1-MNA nor 1,4-DMP, when given in a monotherapy of metastatic cancer, influenced the growth of 4T1 primary tumors transplanted orthotopically; however, both compounds tended to inhibit 4T1 metastases formation in lungs of mice that were orthotopically or intravenously inoculated with 4T1 or 4T1-luc2-tdTomato cells, respectively. Additionally, while 1-MNA enhanced tumor vasculature formation and markedly increased PGI2 generation, 1,4-DMP did not have such an effect. The anti-metastatic activity of 1-MNA and 1,4-DMP was further confirmed when both agents were applied with a cytostatic drug in a combined treatment of 4T1 murine mammary gland cancer what resulted in up to 80 % diminution of lung metastases formation. Conclusions: The results of the studies presented below indicate that 1-MNA and its structural analog 1,4-DMP prevent metastasis and might be beneficially implemented into the treatment of metastatic breast cancer to ensure a comprehensive strategy of metastasis control

    Effects of AKT inhibition on HGF-mediated erlotinib resistance in non-small cell lung cancer cell lines

    No full text
    PURPOSE: Acquired resistance to erlotinib in patients with EGFR-mutant non-small cell lung cancer can result from aberrant activation of alternative receptor tyrosine kinases, such as the HGF-driven c-MET receptor. We sought to determine whether inhibition of AKT signaling could augment erlotinib activity and abrogate HGF-mediated resistance. METHODS: The effects of MK-2206, a selective AKT inhibitor, were evaluated in combination with erlotinib on a large panel of 13 lung cancer cell lines containing different EGFR or KRAS abnormalities. The activity of the combination was assessed using proliferation assays, flow cytometry and immunoblotting. The MEK inhibitor PD0325901 was used to determine the role of the MAP kinase pathway in erlotinib resistance. RESULTS: The combination of MK-2206 and erlotinib resulted in synergistic growth inhibition independent of EGFR mutation status. In cell lines where HGF blocked the anti-proliferative and cytotoxic effects of erlotinib, MK-2206 could restore cell cycle arrest, but MEK inhibition was required for erlotinib-dependent apoptosis. Both AKT and MEK inhibition contributed to cell death independent of erlotinib in the T790M-containing H1975 and the EGFR-WT cell lines tested. CONCLUSIONS: These findings illustrate the potential advantages and challenges of combined signal transduction inhibition as a generalized strategy to circumvent acquired erlotinib resistance
    corecore