1,161 research outputs found

    Some Notes on the Ethics of the Clinical Process

    Get PDF

    The Taurus Boundary of Stellar/Substellar (TBOSS) Survey I: far-IR disk emission measured with Herschel

    Full text link
    With Herschel/PACS 134 low mass members of the Taurus star-forming region spanning the M4-L0 spectral type range and covering the transition from low mass stars to brown dwarfs were observed. Combining the new Herschel results with other programs, a total of 150 of the 154 M4-L0 Taurus members members have observations with Herschel. Among the 150 targets, 70um flux densities were measured for 7 of the 7 ClassI objects, 48 of the 67 ClassII members, and 3 of the 76 ClassIII targets. For the detected ClassII objects, the median 70um flux density level declines with spectral type, however, the distribution of excess relative to central object flux density does not change across the stellar/substellar boundary in the M4-L0 range. Connecting the 70um TBOSS values with the results from K0-M3 ClassII members results in the first comprehensive census of far-IR emission across the full mass spectrum of the stellar and substellar population of a star-forming region, and the median flux density declines with spectral type in a trend analogous to the flux density decline expected for the central objects. SEDs were constructed for all TBOSS targets covering the optical to far-IR range and extending to the submm/mm for a subset of sources. Based on an initial exploration of the impact of different physical parameters; inclination, scale height and flaring have the largest influence on the PACS flux densities. From the 24um to 70um spectral index of the SEDs, 5 new candidate transition disks were identified. The steep 24um to 70um slope for a subset of 8 TBOSS targets may be an indication of truncated disks in these systems.Two examples of mixed pair systems that include secondaries with disks were measured. Finally, comparing the TBOSS results with a Herschel study of Ophiuchus brown dwarfs reveals a lower fraction of disks around the Taurus substellar population.Comment: 64 pages, 33 figures, 12 tables, accepted for publication in A&

    The Brown-dwarf Atmosphere Monitoring (BAM) Project II: Multi-epoch monitoring of extremely cool brown dwarfs

    Full text link
    With the discovery of Y dwarfs by the WISE mission, the population of field brown dwarfs now extends to objects with temperatures comparable to those of Solar System planets. To investigate the atmospheres of these newly identified brown dwarfs, we have conducted a pilot study monitoring an initial sample of three late T-dwarfs (T6.5, T8 and T8.5) and one Y-dwarf (Y0) for infrared photometric variability at multiple epochs. With J-band imaging, each target was observed for a period of 1.0h to 4.5h per epoch, which covers a significant fraction of the expected rotational period. These measurements represent the first photometric monitoring for these targets. For three of the four targets (2M1047, Ross 458C and WISE0458), multi-epoch monitoring was performed, with the time span between epochs ranging from a few hours to ~2 years. During the first epoch, the T8.5 target WISE0458 exhibited variations with a remarkable min-to-max amplitude of 13%, while the second epoch light curve taken ~2 years later did not note any variability to a 3% upper limit. With an effective temperature of ~600 K, WISE0458 is the coldest variable brown dwarf published to-date, and combined with its high and variable amplitude makes it a fascinating target for detailed follow-up. The three remaining targets showed no significant variations, with a photometric precision between 0.8% and 20.0%, depending on the target brightness. Combining the new results with previous multi-epoch observations of brown dwarfs with spectral types of T5 or later, the currently identified variables have locations on the colour-colour diagram better matched by theoretical models incorporating cloud opacities rather than cloud-free atmospheres. This preliminary result requires further study to determine if there is a definitive link between variability among late-T dwarfs and their location on the colour-colour diagram.Comment: 9 pages, 6 figures, 3 tables, accepted for publication in MNRA

    Dust masses of disks around 8 Brown Dwarfs and Very Low-Mass Stars in Upper Sco OB1 and Ophiuchus

    Full text link
    We present the results of ALMA band 7 observations of dust and CO gas in the disks around 7 objects with spectral types ranging between M5.5 and M7.5 in Upper Scorpius OB1, and one M3 star in Ophiuchus. We detect unresolved continuum emission in all but one source, and the 12^{12}CO J=3-2 line in two sources. We constrain the dust and gas content of these systems using a grid of models calculated with the radiative transfer code MCFOST, and find disk dust masses between 0.1 and 1 M_\oplus, suggesting that the stellar mass / disk mass correlation can be extrapolated for brown dwarfs with masses as low as 0.05 M_\odot. The one disk in Upper Sco in which we detect CO emission, 2MASS J15555600, is also the disk with warmest inner disk as traced by its H - [4.5] photometric color. Using our radiative transfer grid, we extend the correlation between stellar luminosity and mass-averaged disk dust temperature originally derived for stellar mass objects to the brown dwarf regime to Tdust22(L/L)0.16K\langle T_{dust} \rangle \approx 22 (L_{*} /L_{\odot})^{0.16} K, applicable to spectral types of M5 and later. This is slightly shallower than the relation for earlier spectral type objects and yields warmer low-mass disks. The two prescriptions cross at 0.27 L_\odot, corresponding to masses between 0.1 and 0.2 M_\odot depending on age.Comment: 9 pages,6 figures, accepted to ApJ on 26/01/201

    The effects of rhythmic structure on tapping accuracy

    Get PDF
    Prior investigations of simple rhythms in familiar time signatures have shown the importance of several mechanisms; notably, those related to metricization and grouping. But there has been limited study of complex rhythms, including those in unfamiliar time signatures, such as are found outside mainstream Western music. Here, we investigate how the structures of 91 rhythms with nonisochronous onsets (mostly complex, several in unfamiliar time signatures) influence the accuracy, velocity, and timing of taps made by participants attempting to synchronize with these onsets. The onsets were piano-tone cues sounded at a well-formed subset of isochronous cymbal pulses; the latter occurring every 234 ms. We modelled tapping at both the rhythm level and the pulse level; the latter provides insight into how rhythmic structure makes some cues easier to tap and why incorrect (uncued) taps may occur. In our models, we use a wide variety of quantifications of rhythmic features, several of which are novel and many of which are indicative of underlying mechanisms, strategies, or heuristics. The results show that, for these tricky rhythms, taps are disrupted by unfamiliar period lengths and are guided by crude encodings of each rhythm: the density of rhythmic cues, their circular mean and variance, and recognizing common small patterns and the approximate positions of groups of cues. These lossy encodings are often counterproductive for discriminating between cued and uncued pulses and are quite different to mechanisms—such as metricization and emphasizing group boundaries—thought to guide tapping behaviours in learned and familiar rhythms

    The Taurus Boundary of Stellar/Substellar (TBOSS) Survey II. Disk Masses from ALMA Continuum Observations

    Get PDF
    We report 885μ\mum ALMA continuum flux densities for 24 Taurus members spanning the stellar/substellar boundary, with spectral types from M4 to M7.75. Of the 24 systems, 22 are detected at levels ranging from 1.0-55.6 mJy. The two non-detections are transition disks, though other transition disks in the sample are detected. Converting ALMA continuum measurements to masses using standard scaling laws and radiative transfer modeling yields dust mass estimates ranging from \sim0.3-20M_{\oplus}. The dust mass shows a declining trend with central object mass when combined with results from submillimeter surveys of more massive Taurus members. The substellar disks appear as part of a continuous sequence and not a distinct population. Compared to older Upper Sco members with similar masses across the substellar limit, the Taurus disks are brighter and more massive. Both Taurus and Upper Sco populations are consistent with an approximately linear relationship in MdustM_{dust} to MstarM_{star}, although derived power-law slopes depend strongly upon choices of stellar evolutionary model and dust temperature relation. The median disk around early M-stars in Taurus contains a comparable amount of mass in small solids as the average amount of heavy elements in Kepler planetary systems on short-period orbits around M-dwarf stars, with an order of magnitude spread in disk dust mass about the median value. Assuming a gas:dust ratio of 100:1, only a small number of low-mass stars and brown dwarfs have a total disk mass amenable to giant planet formation, consistent with the low frequency of giant planets orbiting M-dwarfs.Comment: 41 pages and 32 figures, with all tables and appendices presented here in their entirety. Accepted for publication in AJ (November 26, 2017
    corecore