284 research outputs found

    Bose-Einstein Condensation and Spin Mixtures of Optically Trapped Metastable Helium

    Full text link
    We report the realization of a BEC of metastable helium-4 atoms (4He*) in an all optical potential. Up to 10^5 spin polarized 4He* atoms are condensed in an optical dipole trap formed from a single, focused, vertically propagating far off-resonance laser beam. The vertical trap geometry is chosen to best match the resolution characteristics of a delay-line anode micro-channel plate detector capable of registering single He* atoms. We also confirm the instability of certain spin state combinations of 4He* to two-body inelastic processes, which necessarily affects the scope of future experiments using optically trapped spin mixtures. In order to better quantify this constraint, we measure spin state resolved two-body inelastic loss rate coefficients in the optical trap

    Hanbury Brown Twiss effect for ultracold quantum gases

    Full text link
    We have studied 2-body correlations of atoms in an expanding cloud above and below the Bose-Einstein condensation threshold. The observed correlation function for a thermal cloud shows a bunching behavior, while the correlation is flat for a coherent sample. These quantum correlations are the atomic analogue of the Hanbury Brown Twiss effect. We observe the effect in three dimensions and study its dependence on cloud size.Comment: Figure 1 availabl

    Ionization rates in a Bose-Einstein condensate of metastable Helium

    Full text link
    We have studied ionizing collisions in a BEC of He*. Measurements of the ion production rate combined with measurements of the density and number of atoms for the same sample allow us to estimate both the 2 and 3-body contributions to this rate. A comparison with the decay of the number of condensed atoms in our magnetic trap, in the presence of an rf-shield, indicates that ionizing collisions are largely or wholly responsible for the loss. Quantum depletion makes a substantial correction to the 3-body rate constant.Comment: 4 pages, 3 figure

    Getting the elastic scattering length by observing inelastic collisions in ultracold metastable helium atoms

    Full text link
    We report an experiment measuring simultaneously the temperatureand the flux of ions produced by a cloud of triplet metastablehelium atoms at the Bose-Einstein critical temperature. The onsetof condensation is revealed by a sharp increase of the ion fluxduring evaporative cooling. Combining our measurements withprevious measurements of ionization in a pure BEC,we extract an improved value of the scattering lengtha=11.3−1+2a=11.3^{+2}_{-1} nm. The analysis includes corrections takinginto accountthe effect of atomic interactions on the criticaltemperature, and thus an independent measurement of the scatteringlength would allow a new test of these calculations

    Pair correlations of scattered atoms from two colliding Bose-Einstein Condensates: Perturbative Approach

    Full text link
    We apply an analytical model for anisotropic, colliding Bose-Einstein condensates in a spontaneous four wave mixing geometry to evaluate the second order correlation function of the field of scattered atoms. Our approach uses quantized scattering modes and the equivalent of a classical, undepleted pump approximation. Results to lowest order in perturbation theory are compared with a recent experiment and with other theoretical approaches.Comment: 9 pages, 3 figure

    Violation of the Cauchy-Schwarz inequality with matter waves

    Get PDF
    The Cauchy-Schwarz (CS) inequality -- one of the most widely used and important inequalities in mathematics -- can be formulated as an upper bound to the strength of correlations between classically fluctuating quantities. Quantum mechanical correlations can, however, exceed classical bounds.Here we realize four-wave mixing of atomic matter waves using colliding Bose-Einstein condensates, and demonstrate the violation of a multimode CS inequality for atom number correlations in opposite zones of the collision halo. The correlated atoms have large spatial separations and therefore open new opportunities for extending fundamental quantum-nonlocality tests to ensembles of massive particles.Comment: Final published version (with minor changes). 5 pages, 3 figures, plus Supplementary Materia

    Counting atoms in a deep optical microtrap

    Full text link
    We demonstrate a method to count small numbers of atoms held in a deep, microscopic optical dipole trap by collecting fluorescence from atoms exposed to a standing wave of light that is blue detuned from resonance. While scattering photons, the atoms are also cooled by a Sisyphus mechanism that results from the spatial variation in light intensity. The use of a small blue detuning limits the losses due to light assisted collisions, thereby making the method suitable for counting several atoms in a microscopic volume

    Theory of an optical dipole trap for cold atoms

    Get PDF
    The theory of an atom dipole trap composed of a focused, far red-detuned, trapping laser beam, and a pair of red-detuned, counterpropagating, cooling beams is developed for the simplest realistic multilevel dipole interaction scheme based on a model of a (3+5)-level atom. The description of atomic motion in the trap is based on the quantum kinetic equations for the atomic density matrix and the reduced quasiclassical kinetic equation for atomic distribution function. It is shown that when the detuning of the trapping field is much larger than the detuning of the cooling field, and with low saturation, the one-photon absorption (emission) processes responsible for the trapping potential can be well separated from the two-photon processes responsible for sub-Doppler cooling atoms in the trap. Two conditions are derived that are necessary and sufficient for stable atomic trapping. The conditions show that stable atomic trapping in the optical dipole trap can be achieved when the trapping field has no effect on the two-photon cooling process and when the cooling field does not change the structure of the trapping potential but changes only the numerical value of the trapping potential well. It is concluded that the separation of the trapping and cooling processes in a pure optical dipole trap allows one to cool trapped atoms down to a minimum temperature close to the recoil temperature, keeping simultaneously a deep potential well

    State-Insensitive Cooling and Trapping of Single Atoms in an Optical Cavity

    Get PDF
    Single Cesium atoms are cooled and trapped inside a small optical cavity by way of a novel far-off-resonance dipole-force trap (FORT), with observed lifetimes of 2 to 3 seconds. Trapped atoms are observed continuously via transmission of a strongly coupled probe beam, with individual events lasting ~ 1 s. The loss of successive atoms from the trap N = 3 -> 2 -> 1 -> 0 is thereby monitored in real time. Trapping, cooling, and interactions with strong coupling are enabled by the FORT potential, for which the center-of-mass motion is only weakly dependent on the atom's internal state.Comment: 5 pages, 4 figures Revised version to appear in Phys. Rev. Let
    • …
    corecore