51 research outputs found

    Longitudinal Assessment of Antisaccades in Patients with Multiple Sclerosis

    Get PDF
    We have previously demonstrated that assessment of antisaccades (AS) provides not only measures of motor function in multiple sclerosis (MS), but measures of cognitive control processes in particular, attention and working memory. This study sought to demonstrate the potential for AS measures to sensitively reflect change in functional status in MS. Twenty-four patients with relapsing-remitting MS and 12 age-matched controls were evaluated longitudinally using an AS saccade task. Compared to control subjects, a number of saccade parameters changed significantly over a two year period for MS patients. These included saccade error rates, latencies, and accuracy measures. Further, for MS patients, correlations were retained between OM measures and scores on the PASAT, which is considered the reference task for the cognitive evaluation of MS patients. Notably, EDSS scores for these patients did not change significantly over this period. These results demonstrate that OM measures may reflect disease evolution in MS, in the absence of clinically evident changes as measured using conventional techniques. With replication, these markers could ultimately be developed into a cost-effective, non-invasive, and well tolerated assessment tool to assist in confirming progression early in the disease process, and in measuring and predicting response to therapy

    Quantitative electroencephalography reveals different physiological profiles between benign and remitting-relapsing multiple sclerosis patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A possible method of finding physiological markers of multiple sclerosis (MS) is the application of EEG quantification (QEEG) of brain activity when the subject is stressed by the demands of a cognitive task. In particular, modulations of the spectral content that take place in the EEG of patients with multiple sclerosis remitting-relapsing (RRMS) and benign multiple sclerosis (BMS) during a visuo-spatial task need to be observed.</p> <p>Methods</p> <p>The sample consisted of 19 patients with RRMS, 10 with BMS, and 21 control subjects. All patients were free of medication and had not relapsed within the last month. The power spectral density (PSD) of different EEG bands was calculated by Fast-Fourier-Transformation (FFT), those analysed being delta, theta, alpha, beta and gamma. Z-transformation was performed to observe individual profiles in each experimental group for spectral modulations. Lastly, correlation analyses was performed between QEEG values and other variables from participants in the study (age, EDSS, years of evolution and cognitive performance).</p> <p>Results</p> <p>Nearly half (42%) the RRMS patients showed a statistically significant increase of two or more standard deviations (SD) compared to the control mean value for the beta-2 and gamma bands (F = 2.074, p = 0.004). These alterations were localized to the anterior regions of the right hemisphere, and bilaterally to the posterior areas of the scalp. None of the BMS patients or control subjects had values outside the range of ± 2 SD. There were no significant correlations between these values and the other variables analysed (age, EDSS, years of evolution or behavioural performance).</p> <p>Conclusion</p> <p>During the attentional processing, changes in the high EEG spectrum (beta-2 and gamma) in MS patients exhibit physiological alterations that are not normally detected by spontaneous EEG analysis. The different spectral pattern between pathological and controls groups could represent specific changes for the RRMS patients, indicative of compensatory mechanisms or cortical excitatory states representative of some phases during the RRMS course that are not present in the BMS group.</p

    Evidence for Cognitive Impairment in Mastocytosis: Prevalence, Features and Correlations to Depression

    Get PDF
    Mastocytosis is a heterogeneous disease characterized by mast cells accumulation in one or more organs. We have reported that depression is frequent in mastocytosis, but although it was already described, little is known about the prevalence and features of cognitive impairment. Our objective was to describe the prevalence and features of cognitive impairment in a large cohort of patients with this rare disease (n = 57; mean age = 45) and to explore the relations between memory impairment and depression. Objective memory impairment was evaluated using the 3rd edition of the Clinical Memory scale of Wechsler. Depression symptoms were evaluated using the Hamilton Depression Rating Scale. Age and education levels were controlled for all patients. Patients with mastocytosis presented high levels of cognitive impairment (memory and/or attention) (n = 22; 38.6%). Cognitive impairment was moderate in 59% of the cases, concerned immediate auditory (41%) and working memory (73%) and was not associated to depression (p≥0.717). In conclusion, immediate auditory memory and attention impairment in mastocytosis are frequent, even in young individuals, and are not consecutive to depression. In mastocytosis, cognitive complaints call for complex neuropsychological assessment. Mild-moderate cognitive impairment and depression constitute two specific but somewhat independent syndromes in mastocytosis. These results suggest differential effects of mast-cell activity in the brain, on systems involved in emotionality and in cognition

    Gray matter imaging in multiple sclerosis: what have we learned?

    Get PDF
    At the early onset of the 20th century, several studies already reported that the gray matter was implicated in the histopathology of multiple sclerosis (MS). However, as white matter pathology long received predominant attention in this disease, and histological staining techniques for detecting myelin in the gray matter were suboptimal, it was not until the beginning of the 21st century that the true extent and importance of gray matter pathology in MS was finally recognized. Gray matter damage was shown to be frequent and extensive, and more pronounced in the progressive disease phases. Several studies subsequently demonstrated that the histopathology of gray matter lesions differs from that of white matter lesions. Unfortunately, imaging of pathology in gray matter structures proved to be difficult, especially when using conventional magnetic resonance imaging (MRI) techniques. However, with the recent introduction of several more advanced MRI techniques, the detection of cortical and subcortical damage in MS has considerably improved. This has important consequences for studying the clinical correlates of gray matter damage. In this review, we provide an overview of what has been learned about imaging of gray matter damage in MS, and offer a brief perspective with regards to future developments in this field

    Cholinergic imbalance in the multiple sclerosis hippocampus

    Get PDF
    Hippocampal pathology was shown to be extensive in multiple sclerosis (MS) and is associated with memory impairment. In this post-mortem study, we investigated hippocampal tissue from MS and Alzheimer's disease (AD) patients and compared these to non-neurological controls. By means of biochemical assessment, (immuno)histochemistry and western blot analyses, we detected substantial alterations in the cholinergic neurotransmitter system in the MS hippocampus, which were different from those in AD hippocampus. In MS hippocampus, activity and protein expression of choline acetyltransferase (ChAT), the acetylcholine synthesizing enzyme, was decreased, while the activity and protein expression of acetylcholinesterase (AChE), the acetylcholine degrading enzyme, was found to be unaltered. In contrast, in AD hippocampus both ChAT and AChE enzyme activity and protein expression was decreased. Our findings reveal an MS-specific cholinergic imbalance in the hippocampus, which may be instrumental in terms of future treatment options for memory problems in this diseas

    Brain Structure and Organization Five Decades After Childhood Onset Epilepsy

    No full text
    The purpose of this project was to characterize brain structure and organization in persons with active and remitted childhood onset epilepsy 50 years after diagnosis compared with healthy controls. Participants from a population-based investigation of uncomplicated childhood onset epilepsy were followed up 5 decades later. Forty-one participants had a history of childhood onset epilepsy (mean age of onset=5.2 years, current chronological age=56.0 years) and were compared with 48 population-based controls (mean age=55.9 years). Of the epilepsy participants, 8 had persisting active epilepsy and in 33 the epilepsy had remitted. All participants underwent 3T MRI with subsequent vertex analysis of cortical volume, thickness, surface area and gyral complexity. In addition, cortical and subcortical volumes, including regions of the frontal, parietal, temporal, and occipital lobes, and subcortical structures including amygdala, thalamus, and hippocampus, were analyzed using graph theory techniques. There were modest group differences in traditional vertex-based analyses of cortical volume, thickness, surface area and gyral index, as well as across volumes of subcortical structures, after correction for multiple comparisons. Graph theory analyses revealed suboptimal topological structural organization with enhanced network segregation and reduced global integration in the epilepsy participants compared with controls, these patterns significantly more extreme in the active epilepsy group. Furthermore, both groups with epilepsy presented a greater number of higher Z-score regions in betweenness centrality (BC) than lower Z-score regions compared with controls. Also, contrary to the group with remitted epilepsy, patients with active epilepsy presented most of their high BC Z-score regions in subcortical areas including the amygdala, thalamus, hippocampus, pallidum, and accumbens. Overall, this population-based investigation of long term outcome (5 decades) of childhood onset epilepsy reveals persisting abnormalities, especially when examined by graph theoretical measurements, and provides new insights into the very long-term outcomes of active and remitted epilepsy. (C) 2017 Wiley Periodicals, Inc
    corecore