187 research outputs found

    Strategies for Reducing Sulfur Dioxide Emissions in Europe

    Get PDF
    Based on the Regional Acidification Information and Simulation (RAINS) model the paper explores the following strategies to reduce sulfur emissions in Europe: -- Current Reduction Plans and Maximum Technically Feasible Reductions, -- a reduction of the difference between the deposition in 1990 and the 5 percentile critical loads by 30%, -- achievement of target loads based on the 5 percentile critical loads multiplied by a factor 1.5, 2.0 and 2.5, -- achievement of target loads based on the 50 percentile critical loads, -- reductions based on minimum marginal abatement cost of 2500 DM ton SO2, combined with an international allotment of the remaining money of 0.2% of GDP, -- attainment of national target loads submitted by a number of countries. These strategies are evaluated on the basis of: the national emissions levels in the year 2000, the relative emission reductions (compared the year 1980), the annual costs of pollution control measures and resulting sulfur deposition in relation to the critical loads

    Structure of the RAINS 7.0 Energy and Emissions Database

    Get PDF
    The Regional Acidification Information and Simulation (RAINS) model has been developed as a tool to assess alternative strategies for reducing acid deposition. In the last years the model has been implemented for Europe, and it has been used to support international negotiations within the framework of the UN/ECE Convention on Long-range Transboundary Air Pollution. Only recently, acidification has been recognized as a potential problem also for the rapidly growing economies in South-East Asia. To explore this potential threat and to design countermeasures at an early stage the RAINS model is now being implemented also for this region. Consequently, data base structures and software have been revised to make the RAINS model a universal tool applicable to any region in the world, provided sufficient data are available. This paper gives a detailed description of the revised data base structure of the energy and emissions module of the new model version (RAINS 7.0) and provides data collection tables to facilitate the preparation of model input data

    Modeling Particulate Emissions in Europe. A Framework to Estimate Reduction Potential and Control Costs

    Get PDF
    This paper presents the extension of the Regional Air Pollution Information and Simulation (RAINS) model that addresses present and future emissions of fine particulates in Europe, the potential for controlling these emissions and the costs of such emission reductions. Together with the existing modules dealing with the emissions of the precursor emissions of secondary aerosols such as sulphur dioxide (SO2), nitrogen oxides (NOx), ammonia (NH3) and volatile organic compounds (VOC), this extension enables the comparison of the potentials and costs for controlling primary emissions of fine particles with those of secondary aerosols and to find cost-minimal approaches for reducing ambient levels of particulate matter. The emissions of particulate matter (PM) in the RAINS model are calculated for three different size classes: the fine fraction (PM2.5), the coarse fraction (PM10 - PM2.5) and large particles (PM_>10 5m). Summed up, these three fractions represent total suspended particles (TSP). Fine particles are emitted from a large number of sources with large differences in their technical and economic properties. The methodology distinguishes 392 source categories for stationary energy combustion, industrial processes, mobile sources and agriculture. For each of these sectors, the study explores the applicable options for reducing PM emissions, their efficiency and their costs. Emissions characteristics of the individual sectors are strongly determined by country-specific conditions. The methodology estimates emission control costs of standard technologies under the specific conditions characteristic for the various European countries. Based on the assumption of the general availability of control technologies with equal technical properties and costs, a number of country-specific circumstances (level of technological advancement, installation size distribution, labor costs, etc.) are used to estimate the costs for the actual operation of pollution control equipment. For the individual source sectors, emissions are estimated based on statistical information on economic activity and emission factors that reflect hypothetical emissions if no control measures were applied. These emission factors were taken from the literature and were, to the maximum possible extent, adapted to the country-specific conditions. Actual emissions are calculated taking into account the application of emission control measures in a given sector, for which also costs are estimated. The methodology was implemented for all European countries, covering the period from 1990 to 2010. At an aggregated level, estimates for past years (1990, 1995) correspond well with other national and international inventories. However, discrepancies are found for some detailed results for individual sectors and activities, and more work will be necessary to clarify them. This preliminary implementation suggests for Europe a 50 percent decline of primary emissions of fine particles between 1990 and 1995, mainly due to the economic restructuring in central and eastern European countries. The recently tightened regulations on large combustion plants and mobile sources will further reduce PM emissions, so that for 2010 European PM emissions are expected to be 60 percent below the level of 1990. However, less improvement is expected for the health-relevant fraction of fine particles (PM2.5). It needs to be emphasized that these preliminary estimates are still associated with considerable uncertainties, and more work, involving national experts, will be necessary to obtain a verified and generally accepted European data base to estimate the potential for further reductions of fine particles in Europe. The present implementation (version 2.00) of the RAINS PM module on the Internet (www.iiasa.ac.at/rains/Rains-online.html) provides free access to the input data and results to facilitate interaction with national experts

    Electrochemical Impedance Spectroscopy Based Biosensors: Mechanistic Principles, Analytical Examples and Challenges towards Commercialization for Assays of Protein Cancer Biomarkers

    Get PDF
    Impedimetric affinity biosensors are, without any doubt, among the most sensitive analytical devices available, offering low limits of detection and wide linear response ranges. There are, however, only a few papers detailing the application of impedimetric biosensors for the analysis of clinically relevant samples with due clinical performance. The fact that these devices have not found their way to any commercial or clinical use to date might be surprising, since an electrochemical assay platform based on portable potentiostats is a success story for monitoring a range of clinical parameters such as ions, haematological indicators and glucose. This review discusses the reasons behind this discrepancy and addresses the barriers to be overcome in order to achieve the point-of-care diagnostics using such devices for detection of protein oncomarkers approved by FDA. The final part of the review covers the most recent progress in the area.The financial support received from the Slovak Scientific Grant Agency VEGA 2/0137/18 and 2/0090/16 and the Slovak Research and Development Agency APVV 17-0300 and APW-15-0227 is acknowledged. The research received funding from the European Research Council (no. 311532). This publication is the result of the project implementation: Centre for materials, layers and systems for applications and chemical processes under extreme conditions - Stage I, ITMS No.: 26240120007, supported by the ERDF

    Further vehicle exhaust emission controls and their impact on NO2 air quality in Europe

    Get PDF
    About 8% of the urban population in the European Union (EU28) is exposed to ambient NO2 concentrations in excess of the annual air quality limit value of 40 μg/m3 (Guerreiro et al. 2014, 56f.). In addition, eleven Member States have not met their 2010 NOx emissions cap under the EU Directive on Emission Ceilings, and six countries continue failing still in 2013 (EEA 2015b). High on-road NOx emissions notably from diesel cars are made responsible for the persistent exceedance of the NO2 air quality limit value, in particular along urban roads (EEA 2015a). NOx emissions from all sectors are expected to decrease by more than 40% between 2015 and 2030 if legislation is implemented as planned in EU28. NOx emissions from diesel heavy duty and light duty vehicles are expected to decline by 80% and 60%, respectively, in the same period (Markus Amann et al. 2014). In consequence, exceedances of the NO2 ambient limit values are expected to decrease. However, there is particular uncertainty about the on-road emissions from future light duty diesel vehicles. Therefore, how many stations will still remain in excess of the ambient air quality limit value does crucially depend on the real-world NOx emissions of Euro 6 light duty diesel vehicles (Borken-Kleefeld and Ntziachristos 2012) (Fig. 1). In case of high on-road NOx emissions from Euro 6 diesel cars and light commercial vehicles there might be a need for further emission controls. This study explores how much an additional hypothetical emission control stage (called Euro 7/VII) for light- and heavy-duty diesel vehicles could help to reduce further or quicker the NO2 ambient concentrations

    Emissions of air pollutants for the World Energy Outlook 2011 Energy Scenarios

    Get PDF
    This report examines global emissions of major air pollutants (SO2, NOx, PM2.5) resulting from energy scenarios developed for the World Energy Outlook 2012 (OECD/IEA, 2012). Estimates include emissions for 25 regions according to the aggregation used in the IEA World Energy Model (WEM). Emissions have been estimated using the IIASA GAINS model. The 2012 Outlook discusses four energy pathways for the next 25 years. The central scenario, the New Policies (NP) scenario, takes into account recently announced policy commitments and assumes that they are implemented in a cautious manner. The Current Policies (CP) scenario assumes no new policies beyond those adopted by mid-2012. The High Energy Efficiency (HE) scenario simulates the effects of policies aimed at promoting energy efficiency in all countries in the world. The 450 scenario assumes radical policy action consistent with limiting the global temperature increase to two degrees Celsius. All four pathways were implemented into the GAINS model. Next, emissions of air pollutants were calculated. Calculations take into account the current air pollution control legislation and policies in each country or region as adopted or in the pipeline by mid-2012. Presented in this report estimates do not include emissions from international shipping as well as cruising emissions from aviation. They also do not include emissions from biomass burning (deforestation, savannah burning, and vegetation fires). In 2010, world emissions of SO2 from sources covered in this report were about 86 million tons. OECD countries contributed 21 percent of this total. Implementation of pollution controls for the Current Policies Scenario causes an eight percent decrease in world emissions of SO2 in 2020 compared with 2010. This is a combined result of reducing emissions from OECD countries (by about 24 percent), increase in India, and a decrease in China, Russia, South Africa, and Middle East. After 2020, emissions from many non-OECD countries continue rising, which causes an increase of world emissions by about five million tons until 2035. Particularly remarkable is the increase in SO2 emissions in India. The corresponding numbers for NOx are: 85 million tons in 2010 (of which 35 percent originated from the OECD countries), five percent decrease until 2020 and next increase until 2035 by 12 million tons. Emissions of PM2.5 (43 million tons in 2010) are dominated by sources from non-OECD countries - 90 percent of total. Changes in the emissions until 2035 are rather small, with a seven percent decrease in the OECD countries and a stabilization in the developing world. The 450 Scenario causes an important reduction in emissions of air pollutants. In 2035, the emissions of SO2 are 36 percent lower than in the Current Policies case. Emissions of NOx decrease by 32 percent and those of PM2.5 by 11 percent. Emissions for the New Policies and the High Energy Efficiency scenarios lie between those for the Current Policies and the 450 scenarios. Costs of controlling emissions of sulphur and nitrogen oxides and PM (dust) in 2010 are estimated at about 217 billion Euros/a. Until 2035, these costs increase in the Current Policies Scenario by more than a factor of two, which is due to higher activity levels and increasing stringency of controls. In 2035, 61 percent of the total costs are the expenditures on reducing emissions from road transport. The 450 Scenario brings 32 percent cost savings in 2035 compared to the Current Policies case. This study also estimates health impacts of air pollution in Europe, China and India in terms of life years lost (YOLL) attributable to the exposure from anthropogenic emissions of PM2.5. PM concentrations as in 2010 cause a loss of about 2.2 billion life-years. This estimate is dominated by impacts in China and India. The Current Policies Scenario implies an increase of the YOLL indicator in 2035 by 46 percent to 3.3 billion. Decrease of PM2.5 concentrations as in the 450 Scenario in 2035 saves about 870 million life-years. Lower impact indicators and lower control costs in the scenarios that simulate effects of policies towards reducing energy demand and the use of fossil fuels clearly demonstrate important co-benefits of such policies for air pollution

    Emissions of air pollutants for the World Energy Outlook 2012 energy scenarios

    Get PDF
    This report examines global emissions of major air pollutants (SO2, NOx, PM2.5) resulting from energy scenarios developed for the World Energy Outlook 2012 (OECD/IEA, 2012). Estimates include emissions for 25 regions according to the aggregation used in the IEA World Energy Model (WEM). Emissions have been estimated using the IIASA GAINS model. The 2012 Outlook discusses four energy pathways for the next 25 years. The central scenario, the New Policies (NP) scenario, takes into account recently announced policy commitments and assumes that they are implemented in a cautious manner. The Current Policies (CP) scenario assumes no new policies beyond those adopted by mid-2012. The High Energy Efficiency (HE) scenario simulates the effects of policies aimed at promoting energy efficiency in all countries in the world. The 450 scenario assumes radical policy action consistent with limiting the global temperature increase to two degrees Celsius (2 oC). All the four pathways were implemented into the GAINS model. Next, emissions of air pollutants were calculated. Calculations take into account the current air pollution control legislation and policies in each country or region as adopted or in the pipeline by mid-2012. Presented in this report estimates do not include emissions from international shipping as well as cruising emissions from aviation. They also do not include emissions from biomass burning (deforestation, savannah burning, and vegetation fires). In 2010, world emissions of SO2 from sources covered in this report were about 86 million tons. OECD countries contributed 21 percent of this total. Implementation of pollution controls for the Current Policies Scenario causes an eight percent decrease in world emissions of SO2 in 2020 compared with 2010. This is a combined result of reducing emissions from OECD countries (by about 24 percent), increase in India, and a decrease in China, Russia, South Africa, and Middle East. After 2020, emissions from many non-OECD countries continue rising, which causes an increase of world emissions by about five million tons until 2035. Particularly remarkable is the increase in SO2 emissions in India. The corresponding numbers for NOx are: 85 million tons in 2010 (of which 35 percent originated from the OECD countries), five percent decrease until 2020 and next increase until 2035 by 12 million tons. Emissions of PM2.5 (43 million tons in 2010) are dominated by sources from non-OECD countries -- 90 percent of total. Changes in the emissions until 2035 are rather small, with a seven percent decrease in the OECD countries and a stabilization in the developing world. The 450 Scenario causes an important reduction in emissions of air pollutants. In 2035, the emissions of SO2 are 36 percent lower than in the Current Policies case. Emissions of NOx decrease by 32 percent and those of PM2.5 by 11 percent. Emissions for the New Policies and the High Energy Efficiency scenarios lie between those for the Current Policies and the 450 scenarios. Costs of controlling emissions of sulphur and nitrogen oxides and PM (dust) in 2010 are estimated at about 217 billion Euros/a. Until 2035, these costs increase in the Current Policies Scenario by more than a factor of two, which is due to higher activity levels and increasing stringency of controls. In 2035, 61 percent of the total costs are the expenditures on reducing emissions from road transport. The 450 Scenario brings 32 percent cost savings in 2035 compared to the Current Policies case. This study also estimates health impacts of air pollution in Europe, China and India in terms of life years lost (YOLL) attributable to the exposure from anthropogenic emissions of PM2.5. PM concentrations as in 2010 cause a loss of about 2.2 billion life-years. This estimate is dominated by impacts in China and India. The Current Policies Scenario implies an increase of the YOLL indicator in 2035 by 46 percent to 3.3 billion. Decrease of PM2.5 concentrations as in the 450 Scenario in 2035 saves about 870 million life-years. Lower impact indicators and lower control costs in the scenarios that simulate effects of policies towards reducing energy demand and the use of fossil fuels clearly demonstrate important co-benefits of such policies for air pollution
    • …
    corecore