166 research outputs found

    Silicon solar cell–integrated stress and temperature sensors for photovoltaic modules

    Get PDF
    We propose silicon solar cell–integrated stress and temperature sensors as a new approach for the stress and temperature measurement in photovoltaic (PV) modules. The solar cell–integrated sensors enable a direct and continuous in situ measurement of mechanical stress and temperature of solar cells within PV modules. In this work, we present a proof of concept for stress and temperature sensors on a silicon solar cell wafer. Both sensors were tested in a conventional PV module setup. For the stress sensor, a sensitivity of (−47.41 ± 0.14)%/GPa has been reached, and for the temperature sensor, a sensitivity of (3.557 ± 0.008) × 103^{-3} K1^{-1} has been reached. These sensors can already be used in research for increased measurement accuracy of the temperature and the mechanical stress in PV modules because of the implementation at the precise location of the solar cells within a laminate stack, for process evaluation, in‐situ measurements in reliability tests, and the correlation with real exposure to climates

    Using waste to reduce slope erosion on road embankments

    Get PDF
    “Permission is granted by ICE Publishing to print one copy for personal use. Any other use of these PDF files is subject to reprint fees" (www.transport-ice.com). http://dx.doi.org/10.1680/tran.2006.159.1.15Urban waste may be used to reduce slope erosion of highway embankments. Whereas different kinds of compost have been tested in the USA for highway revegetation, sewage sludge has been used only for agricultural purposes. This paper presents the results of research carried out in order to study the viability of the application of sewage sludge compared with compost. Test areas measuring 4 m 3 5 m were constructed on a new highway embankment with 2 : 1 and 3 : 2 side slopes in the south of Spain. Crop cover and erosion were evaluated for plots with application of three dosages of compost and three dosages of sludge. Also, the costs of the proposed application are analysed. This treatment costs, on average, 0.24% of the budget for new roads infrastructure, and reduces soil loss by up to 30% on average. Based on these results, compost and sludge can be successfully used to reduce slope erosion on highway embankments. However, standards and specifications are required for their routine application.Department of Civil Engineering, University of Granada, Spai

    Micro-spectroscopy on silicon wafers and solar cells

    Get PDF
    Micro-Raman (μRS) and micro-photoluminescence spectroscopy (μPLS) are demonstrated as valuable characterization techniques for fundamental research on silicon as well as for technological issues in the photovoltaic production. We measure the quantitative carrier recombination lifetime and the doping density with submicron resolution by μPLS and μRS. μPLS utilizes the carrier diffusion from a point excitation source and μRS the hole density-dependent Fano resonances of the first order Raman peak. This is demonstrated on micro defects in multicrystalline silicon. In comparison with the stress measurement by μRS, these measurements reveal the influence of stress on the recombination activity of metal precipitates. This can be attributed to the strong stress dependence of the carrier mobility (piezoresistance) of silicon. With the aim of evaluating technological process steps, Fano resonances in μRS measurements are analyzed for the determination of the doping density and the carrier lifetime in selective emitters, laser fired doping structures, and back surface fields, while μPLS can show the micron-sized damage induced by the respective processes

    Boron emitter passivation with AI2O3 and AI2O3/SiNx stacks using ALD AI2O3

    No full text
    Thin layers of Al2O3 are known to feature excellent passivation properties on highly boron-doped silicon surfaces. In this paper, we present a detailed study of the passivation quality of Al2O3 single layers and stacks of Al2O3 and antireflection SiNx on boron-doped emitters, where the Al2O3 was deposited by plasma-assisted atomic layer deposition and the SiNx by plasma-enhanced chemical vapor deposition. The passivation quality was studied for different atomic layer deposition temperatures, as a function of the Al2O3 layer thickness, as well as on samples with planar and random pyramids textured surfaces. These investigations were performed for different boron emitter diffusions, such as shallow, industrial emitters with high surface concentrations, as well as driven-in emitters with low surface concentrations. For all these variations, we compared systematically different thermal post-deposition treatments to activate the Al2O3 passivation, i.e., annealing processes at moderate temperatures and short high-temperature processes, as required for firing printed metal contacts. Therefore, symmetrically processed p+np + samples were fabricated, which were characterized with the photoconductance decay technique to determine emitter saturation current densities. Finally, the longtime stability of the Al2O3/SiNx stacks with planar and textured surfaces was investigated with an accelerated ultraviolet (UV) exposure experiment, miming about 34 month of outdoor performance

    Reaction kinetics during the thermal activation of the silicon surface passivation with atomic layer deposited Al2O3

    No full text
    The excellent surface passivation of crystalline silicon provided by Al 2O3 requires always an activation by a thermal post-deposition treatment. In this work, we present an indirect study of the reaction kinetics during such thermal activation treatments for Al 2O3 synthesized by atomic layer deposition. The study was performed for Al 2O3 deposited at varying temperatures, which results in different micro-structures of the films and, in particular, different hydrogen concentrations. The effective carrier lifetime was measured sequentially as a function of the annealing time and temperature. From these data, the reaction rate R act and the activation energy E A were extracted. The results revealed a rather constant E A in the range of 1.4 to 1.5 eV, independent of the deposition temperature. The reaction rate, however, was found to increase with decreasing deposition temperature, which correlates with an increasing amount of hydrogen being incorporated in the Al 2O3 films. This is a strong indication for an interface hydrogenation that takes place during the thermal activation, which is limited by the amount of hydrogen provided by the Al 2O3 layer
    corecore