70 research outputs found

    Ordered assembly of the asymmetrically branched lipid-linked oligosaccharide in the endoplasmic reticulum is ensured by the substrate specificity of the individual glycosyltransferases

    Full text link
    The assembly of the lipid-linked core oligosaccharide Glc3Man9GlcNAc2, the substrate for N-linked glycosylation of proteins in the endoplasmic reticulum (ER), is catalyzed by different glycosyltransferases located at the membrane of the ER. We report on the identification and characterization of the ALG12 locus encoding a novel mannosyltransferase responsible for the addition of the α-1,6 mannose to dolichollinked Man7GlcNAc2. The biosynthesis of the highly branched oligosaccharide follows an ordered pathway which ensures that only completely assembled oligosaccharide is transferred from the lipid anchor to proteins. Using the combination of mutant strains affected in the assembly pathway of lipid-linked oligosaccharides and overexpression of distinct glycosyltransferases, we were able to define the substrate specificities of the transferases that are critical for branching. Our results demonstrate that branched oligosaccharide structures can be specifically recognized by the ER glycosyltransferases. This substrate specificity of the different transferases explains the ordered assembly of the complex structure of lipid-linked Glc3Man9GlcNAc2 in the endoplasmic reticulu

    Derivatization of estrogens enhances specificity and sensitivity of analysis of human plasma and serum by liquid chromatography tandem mass spectrometry

    Get PDF
    AbstractEstrogens circulate at concentrations less than 20pg/mL in men and postmenopausal women, presenting analytical challenges. Quantitation by immunoassay is unreliable at these low concentrations. Liquid chromatography tandem mass spectrometry (LC–MS/MS) offers greater specificity and sometimes greater sensitivity, but ionization of estrogens is inefficient. Introduction of charged moieties may enhance ionization, but many such derivatives of estrogens generate non-specific product ions originating from the “reagent” group. Therefore an approach generating derivatives with product ions specific to individual estrogens was sought.Estrogens were extracted from human plasma and serum using solid phase extraction and derivatized using 2-fluoro-1-methylpyridinium-p-toluenesulfonate (FMP-TS). Electrospray in positive mode with multiple reaction monitoring using a QTrap 5500 mass spectrometer was used to quantify “FMP” derivatives of estrogens, following LC separation.Transitions for the FMP derivatives of estrone (E1) and estradiol (E2) were compound specific (m/z 362→238 and m/z 364→128, respectively). The limits of detection and quantitation were 0.2pg on-column and the method was linear from 1–400pg/sample. Measures of intra- and inter-assay variability, precision and accuracy were acceptable (<20%). The derivatives were stable over 24h at 10°C (7–9% degradation). Using this approach, E1 and E2, respectively were detected in human plasma and serum: pre-menopausal female serum (0.5mL) 135–473, 193–722pmol/L; male plasma (1mL) 25–111, 60–180pmol/L and post-menopausal female plasma (2mL), 22–78, 29–50pmol/L.Thus FMP derivatization, in conjunction with LC–MS/MS, is suitable for quantitative analysis of estrogens in low abundance in plasma and serum, offering advantages in specificity over immunoassay and existing MS techniques

    Ribonuclease Activity of Dis3 Is Required for Mitotic Progression and Provides a Possible Link between Heterochromatin and Kinetochore Function

    Get PDF
    BACKGROUND: Cellular RNA metabolism has a broad range of functional aspects in cell growth and division, but its role in chromosome segregation during mitosis is only poorly understood. The Dis3 ribonuclease is a key component of the RNA-processing exosome complex. Previous isolation of the dis3-54 cold-sensitive mutant of fission yeast Schizosaccharomyces pombe suggested that Dis3 is also required for correct chromosome segregation. METHODOLOGY/PRINCIPAL FINDINGS: We show here that the progression of mitosis is arrested in dis3-54, and that segregation of the chromosomes is blocked by activation of the mitotic checkpoint control. This block is dependent on the Mad2 checkpoint protein. Double mutant and inhibitor analyses revealed that Dis3 is required for correct kinetochore formation and function, and that this activity is monitored by the Mad2 checkpoint. Dis3 is a member of the highly conserved RNase II family and is known to be an essential subunit of the exosome complex. The dis3-54 mutation was found to alter the RNaseII domain of Dis3, which caused a reduction in ribonuclease activity in vitro. This was associated with loss of silencing of an ura4(+) reporter gene inserted into the outer repeats (otr) and central core (cnt and imr) regions of the centromere. On the other hand, centromeric siRNA maturation and formation of the RITS RNAi effector complex was normal in the dis3-54 mutant. Micrococcal nuclease assay also suggested the overall chromatin structure of the centromere was not affected in dis3-54 mutant. CONCLUSIONS/SIGNIFICANCE: RNase activity of Dis3, a core subunit of exosome, was found to be required for proper kinetochore formation and establishment of kinetochore-microtubule interactions. Moreover, Dis3 was suggested to contribute to kinetochore formation through an involvement in heterochromatic silencing at both outer centromeric repeats and within the central core region. This activity is likely monitored by the mitotic checkpoint, and distinct from that of RNAi-mediated heterochromatin formation directly targeting outer centromeric repeats

    Use of anticoagulants and antiplatelet agents in stable outpatients with coronary artery disease and atrial fibrillation. International CLARIFY registry

    Get PDF

    Expression of the innate immune receptor LILRB5 on monocytes is associated with mycobacteria exposure.

    Get PDF
    Antigen presenting cells (APC) are critical components of innate immunity and consequently shape the adaptive response. Leukocyte Ig Like Receptors (LILR) are innate immune receptors predominantly expressed on myeloid cells. LILR can influence the antigen presenting phenotype of monocytic cells to determine the nature of T cell responses in infections including Mycobaterium leprae. We therefore investigated the relevance of LILR in the context of Mycobacterium tuberculosis. Real-time PCR studies indicated that the transcriptional profile of the orphan receptor LILRB5 was significantly up-regulated following exposure to mycobacteria. Furthermore, LILRA1 and LILRB5 were able to trigger signalling through direct engagement of mycobacteria using tranfectant cells incorporating a reporter system. We describe for the first time the expression of this receptor on T cells, and highlight the potential relevance to mycobacterial recognition. Furthermore, we demonstrate that crosslinking of this receptor on T cells increases proliferation of cytotoxic, but not helper, T cells

    Functional selection for the centromere DNA from yeast chromosome VIII.

    No full text
    Centromeres are essential components of eucaryotic chromosomes. In budding yeast, up to now, 15 of the 16 centromere DNAs have been isolated. Here we report the functional isolation and characterization of CEN8, the last of the yeast centromeres missing. The centromere consensus sequence for the 16 chromosomes in this organism is presented

    Reduce, Reuse, Recycle: Introducing MetaPipeX, a Framework for Analyses of Multi-Lab Data

    No full text
    Multi-lab projects are large scale collaborations between participating data collection sites that gather empirical evidence and (usually) analyze that evidence using meta-analyses. They are a valuable form of scientific collaboration, produce outstanding data sets and are a great resource for third-party researchers. Their data may be reanalyzed and used in research synthesis. Their repositories and code could provide guidance to future projects of this kind. But, while multi-labs are similar in their structure and aggregate their data using meta-analyses, they deploy a variety of different solutions regarding the storage structure in the repositories, the way the (analysis) code is structured and the file-formats they provide. Continuing this trend implies that anyone who wants to work with data from multiple of these projects, or combine their datasets, is faced with an ever-increasing complexity. Some of that complexity could be avoided. Here, we introduce MetaPipeX, a standardized framework to harmonize, document and analyze multi-lab data. It features a pipeline conceptualization of the analysis and documentation process, an R-package that implements both and a Shiny App (https://www.apps.meta-rep.lmu.de/metapipex/) that allows users to explore and visualize these data sets. We introduce the framework by describing its components and applying it to a practical example. Engaging with this form of collaboration and integrating it further into research practice will certainly be beneficial to quantitative sciences and we hope the framework provides a structure and tools to reduce effort for anyone who creates, re-uses, harmonizes or learns about multi-lab replication projects
    corecore