419 research outputs found

    Dder einfluss von liganden auf den assoziationsgrad des desoxy-hämoglobins der flussneunaugen (lampetra fluviatilis L.)

    Get PDF
    AbstractIn alkaline aqueous solution, the sedimentation coefficients of DeoxyHb, HbO2 and HbCO of Lampetra fluviatilis L. are 1.9 ± 0.1 S. This value corresponds to a molecular weight of about 17,000, i.e. the value of a single haem polypeptide chain. In weak acidic conditions, both the non-liganded DeoxyHb and the liganded forms, HbO2 and HbCO, associate to form dimers and oligomers. The monomer-oligomer transitions of these compounds take place at different pH values: DeoxyHb pHO.5 ∼ 6.7; HbO2 and HbCO pHO.5 ∼ 5.9. With respect to the association modus, the equilibrium: 4 Hb ⇌ 2 Hb2⇌Hb4 may be preferred

    Auto-inhibitory effects of an IQ motif on protein structure and function

    Get PDF
    The denuded IQ2 domain, i.e. myosin heavy chain not associated with regulatory light chains, exerts an inhibitory effect on myosin ATPase activity. In this study, we elaborated a structural explanation for this auto-inhibitory effect of IQ2 on myosin function. We employed analytical ultracentrifugation, circular dichroism, and surface plasmon resonance spectroscopy to investigate structural and functional properties of a myosin heavy chain (MYH) head-rod fragment aa664-915. MYH(664-915) was monomeric, adopted a closed shape, and bound essential myosin light chains (HIS-MLC-1) with low affinity to IQ1. Deletion of IQ2, however opened MYH(664-915). Four amino acids present in IQ2 could be identified to be responsible for this auto-inhibitory structural effect: alanine mutagenesis of I814, Q815, R819, and W827 stretched MYH(664-915) and increased 30fold the binding affinity of HIS-MLC-1 to IQ1. In this study we show, that denuded IQ2 favours a closed conformation of myosin with a low HIS-MLC-1 binding affinity. The collapsed structure of myosin with denuded IQ2 could explain the auto-inhibitory effects of IQ2 on enzymatic activity of myosin

    Measurements of Protein-Protein Interactions by Size Exclusion Chromatography

    Get PDF
    A method is presented for determining second virial coefficients B_2 of protein solutions from retention time measurements in size exclusion chromatography (SEC). We determine B_2 by analyzing the concentration dependance of the chromatographic partition coefficient. We show the ability of this method to track the evolution of B_2 from positive to negative values in lysozyme and bovine serum albumin solutions. Our SEC results agree quantitatively with data obtained by light scattering.Comment: 18 pages including 1 table and 5 figure

    Study of blade aspect ratio on a compressor front stage

    Get PDF
    A single stage, low aspect ratio, compressor with a 442.0 m/sec (1450 ft/sec) tip speed and a 0.597 hub/tip ratio typical of an advanced core compressor front stage was tested. The test stage incorporated an inlet duct which was representative of an engine transition duct between fan and high pressure compressors. At design speed, the rotor stator stage achieved a peak adiabatic efficiency of 86.6 percent at a flow of 44.35 kg/sec (97.8 lbm/sec) and a pressure ratio of 1.8. Surge margin was 12.5 percent from the peak stage efficiency point

    A potential role for RNA interference in controlling the activity of the human LINE-1 retrotransposon

    Get PDF
    Long interspersed nuclear elements (LINE-1 or L1) comprise 17% of the human genome, although only 80–100 L1s are considered retrotransposition-competent (RC-L1). Despite their small number, RC-L1s are still potential hazards to genome integrity through insertional mutagenesis, unequal recombination and chromosome rearrangements. In this study, we provide several lines of evidence that the LINE-1 retrotransposon is susceptible to RNA interference (RNAi). First, double-stranded RNA (dsRNA) generated in vitro from an L1 template is converted into functional short interfering RNA (siRNA) by DICER, the RNase III enzyme that initiates RNAi in human cells. Second, pooled siRNA from in vitro cleavage of L1 dsRNA, as well as synthetic L1 siRNA, targeting the 5′-UTR leads to sequence-specific mRNA degradation of an L1 fusion transcript. Finally, both synthetic and pooled siRNA suppressed retrotransposition from a highly active RC-L1 clone in cell culture assay. Our report is the first to demonstrate that a human transposable element is subjected to RNAi

    Self-interaction chromatography as a tool for optimizing conditions for membrane protein crystallization

    Get PDF
    The second virial coefficient, or B value, is a measurement of how well a protein interacts with itself in solution. These interactions can lead to protein crystallization or precipitation, depending on their strength, with a narrow range of B values (the `crystallization slot') being known to promote crystallization. A convenient method of determining the B value is by self-interaction chromatography. This paper describes how the light-harvesting complex 1-reaction centre core complex from Allochromatium vinosum yielded single straight-edged crystals after iterative cycles of self-interaction chromatography and crystallization. This process allowed the rapid screening of small molecules and detergents as crystallization additives. Here, a description is given of how self-interaction chromatography has been utilized to improve the crystallization conditions of a membrane protein

    Deep Sequencing Analyses of DsiRNAs Reveal the Influence of 3′ Terminal Overhangs on Dicing Polarity, Strand Selectivity, and RNA Editing of siRNAs

    Get PDF
    25/27 Base duplex RNAs that are substrates for Dicer have been demonstrated to enhance RNA interference (RNAi) potency and efficacy. Since the target sites are not always equally susceptible to suppression by small interfering RNA (siRNA), not all 27-mer duplexes that are processed into the corresponding conventional siRNAs show increased potency. Thus random designing of Dicer-substrate siRNAs (DsiRNAs) may generate siRNAs with poor RNAi due to unpredictable Dicer processing. Previous studies have demonstrated that the 3′-overhang affects dicing cleavage site and the orientation of Dicer entry. Moreover, an asymmetric 27-mer duplex having a 3′ two-nucleotide overhang and 3′-DNA residues on the blunt end has been rationally designed to obtain greater efficacy. This asymmetric structure directs dicing to predictably yield a single primary cleavage product. In the present study, we analyzed the in vitro and intracellular dicing patterns of chemically synthesized duplex RNAs with different 3′-overhangs. Consistent with previous studies, we observed that Dicer preferentially processes these RNAs at a site 21–22 nucleotide (nt) from the two-base 3′-overhangs. We also observed that the direction and ability of human Dicer to generate siRNAs can be partially or completely blocked by DNA residues at the 3′-termimi. To examine the effects of various 3′-end modifications on Dicer processing in cells, we employed Illumina Deep sequencing analyses to unravel the fates of the asymmetric 27-mer duplexes. To validate the strand selection process and knockdown capabilities we also conducted dual-luciferase psiCHECK reporter assays to monitor the RNAi potencies of both the “sense” (S) and “antisense” (AS) strands derived from these DsiRNAs. Consistent with our in vitro Dicer assays, the asymmetric duplexes were predictably processed into desired primary cleavage products of 21–22-mers in cells. We also observed the trimming of the 3′ end, especially when DNA residues were incorporated into the overhangs and this trimming ultimately influenced the Dicer-cleavage site and RNAi potency. Moreover, the observation that the most efficacious strand was the most abundant revealed that the relative frequencies of each “S” or “AS” strand are highly correlated with the silencing activity and strand selectivity. Collectively, our data demonstrate that even though the only differences between a family of DsiRNAs was the 3′ two-nuclotide overhang, dicing polarity and strand selectivity are distinct depending upon the sequence and chemical nature of this overhang. Thus, it is possible to predictably control dicing polarity and strand selectivity via simply changing the 3′-end overhangs without altering the original duplex sequence. These optimal design features of 3′-overhangs might provide a facile approach for rationally designing highly potent 25/27-mer DsiRNAs

    Ahnak1 modulates L-type Ca(2+) channel inactivation of rodent cardiomyocytes

    Get PDF
    Ahnak1, a giant 700 kDa protein, has been implicated in Ca(2+) signalling in various cells. Previous work suggested that the interaction between ahnak1 and Cavbeta(2) subunit plays a role in L-type Ca(2+) current (I (CaL)) regulation. Here, we performed structure-function studies with the most C-terminal domain of ahnak1 (188 amino acids) containing a PxxP consensus motif (designated as 188-PSTP) using ventricular cardiomyocytes isolated from rats, wild-type (WT) mice and ahnak1-deficient mice. In vitro binding studies revealed that 188-PSTP conferred high-affinity binding to Cavbeta(2) (K (d) approximately 60 nM). Replacement of proline residues by alanines (188-ASTA) decreased Cavbeta(2) affinity about 20-fold. Both 188-PSTP and 188-ASTA were functional in ahnak1-expressing rat and mouse cardiomyocytes during whole-cell patch clamp. Upon intracellular application, they increased the net Ca(2+) influx by enhancing I (CaL) density and/or increasing I (CaL) inactivation time course without altering voltage dependency. Specifically, 188-ASTA, which failed to affect I (CaL) density, markedly slowed I (CaL) inactivation resulting in a 50-70% increase in transported Ca(2+) during a 0 mV depolarising pulse. Both ahnak1 fragments also slowed current inactivation with Ba(2+) as charge carrier. By contrast, neither 188-PSTP nor 188-ASTA affected any I (CaL) characteristics in ahnak1-deficient mouse cardiomyocytes. Our results indicate that the presence of endogenous ahnak1 is required for tuning the voltage-dependent component of I (CaL) inactivation by ahnak1 fragments. We suggest that ahnak1 modulates the accessibility of molecular determinants in Cavbeta(2) and/or scaffolds selectively different beta-subunit isoforms in the heart

    Attention deficit hyperactivity disorder and depressive symptoms in childhood

    Get PDF
    This research investigated the presentation and impact of depressive symptoms in children with attention deficit hyperactivity disorder across a three year period. It found that depressive symptoms occur in children with ADHD as young as six years of age. Those with ADHD experienced significantly more depressive symptoms than those without but the presentation of depressive symptoms across those with and without ADHD was found to be similar. Finally, this research demonstrated the significant impact depressive symptoms has on the outcomes of those with ADHD three years later
    corecore