3,682 research outputs found
Collapse of a Molecular Cloud Core to Stellar Densities: The First Three-Dimensional Calculations
We present results from the first three-dimensional calculations ever to
follow the collapse of a molecular cloud core (~ 10^{-18} g cm^{-3}) to stellar
densities (> 0.01 g cm^{-3}). The calculations resolve structures over 7 orders
of magnitude in spatial extent (~ 5000 AU - 0.1 R_\odot), and over 17 orders of
magnitude in density contrast. With these calculations, we consider whether
fragmentation to form a close binary stellar system can occur during the second
collapse phase. We find that, if the quasistatic core that forms before the
second collapse phase is dynamically unstable to the growth of non-axisymmetric
perturbations, the angular momentum extracted from the central regions of the
core, via gravitational torques, is sufficient to prevent fragmentation and the
formation of a close binary during the subsequent second collapse.Comment: ApJ Letters, in press (will appear in Nov 20 issue; available from
the ApJ Rapid Release web page). 7 pages, incl. 5 figures. Also available at
http://www.mpia-hd.mpg.de/theory/bat
Magnetic fields and radiative feedback in the star formation process
Star formation is a complex process involving the interplay of many physical
effects, including gravity, turbulent gas dynamics, magnetic fields and
radiation. Our understanding of the process has improved substantially in
recent years, primarily as a result of our increased ability to incorporate the
relevant physics in numerical calculations of the star formation process. In
this contribution we present an overview of our recent studies of star cluster
formation in turbulent, magnetised clouds using self-gravitating
radiation-magnetohydrodynamics calculations (Price and Bate 2008, 2009). Our
incorporation of magnetic fields and radiative transfer into the Smoothed
Particle Hydrodynamics method are discussed. We highlight how magnetic fields
and radiative heating of the gas around newborn stars can solve several of the
key puzzles in star formation, including an explanation for why star formation
is such a slow and inefficient process. However, the presence of magnetic
fields at observed strengths in collapsing protostellar cores also leads to
problems on smaller scales, including a difficulty in forming protostellar
discs and binary stars (Price and Bate 2007, Hennebelle and Teyssier 2008),
which suggests that our understanding of the role of magnetic fields in star
formation is not yet complete.Comment: 14 pages aip conf. format, 5 figures, submitted to AIP conf proc. of
"Plasmas in the Laboratory and in the Universe: Interactions, Patterns and
Turbulence", Como, Italy 1st-4th Dec 2009, eds. Bertin et al. Relevant movies
at http://users.monash.edu.au/~dprice/mclusterRT/index.html#movie
The effect of magnetic fields on star cluster formation
We examine the effect of magnetic fields on star cluster formation by
performing simulations following the self-gravitating collapse of a turbulent
molecular cloud to form stars in ideal MHD. The collapse of the cloud is
computed for global mass-to-flux ratios of infinity, 20, 10, 5 and 3, that is
using both weak and strong magnetic fields. Whilst even at very low strengths
the magnetic field is able to significantly influence the star formation
process, for magnetic fields with plasma beta < 1 the results are substantially
different to the hydrodynamic case. In these cases we find large-scale
magnetically-supported voids imprinted in the cloud structure; anisotropic
turbulent motions and column density structure aligned with the magnetic field
lines, both of which have recently been observed in the Taurus molecular cloud.
We also find strongly suppressed accretion in the magnetised runs, leading to
up to a 75% reduction in the amount of mass converted into stars over the
course of the calculations and a more quiescent mode of star formation. There
is also some indication that the relative formation efficiency of brown dwarfs
is lower in the strongly magnetised runs due to the reduction in the importance
of protostellar ejections.Comment: 16 pages, 9 figures, 8 very pretty movies, MNRAS, accepted. Version
with high-res figures + movies available from
http://www.astro.ex.ac.uk/people/dprice/pubs/mcluster/index.htm
Smoothed particle magnetohydrodynamic simulations of protostellar outflows with misaligned magnetic field and rotation axes
We have developed a modified form of the equations of smoothed particle
magnetohydrodynamics which are stable in the presence of very steep density
gradients. Using this formalism, we have performed simulations of the collapse
of magnetised molecular cloud cores to form protostars and drive outflows. Our
stable formalism allows for smaller sink particles (< 5 AU) than used
previously and the investigation of the effect of varying the angle, {\theta},
between the initial field axis and the rotation axis. The nature of the
outflows depends strongly on this angle: jet-like outflows are not produced at
all when {\theta} > 30{\deg}, and a collimated outflow is not sustained when
{\theta} > 10{\deg}. No substantial outflows of any kind are produced when
{\theta} > 60{\deg}. This may place constraints on the geometry of the magnetic
field in molecular clouds where bipolar outflows are seen.Comment: Accepted for publication in MNRAS, 13 pages, 14 figures. Animations
can be found at
http://www.astro.ex.ac.uk/people/blewis/research/outflows_misaligned_fields.htm
Modelling circumstellar discs with 3D radiation hydrodynamics
We present results from combining a grid-based radiative transfer code with a
Smoothed Particle Hydrodynamics code to produce a flexible system for modelling
radiation hydrodynamics. We use a benchmark model of a circumstellar disc to
determine a robust method for constructing a gridded density distribution from
SPH particles. The benchmark disc is then used to determine the accuracy of the
radiative transfer results. We find that the SED and the temperature
distribution within the disc are sensitive to the representation of the disc
inner edge, which depends critically on both the grid and SPH resolution. The
code is then used to model a circumstellar disc around a T-Tauri star. As the
disc adjusts towards equilibrium vertical motions in the disc are induced
resulting in scale height enhancements which intercept radiation from the
central star. Vertical transport of radiation enables these perturbations to
influence the mid-plane temperature of the disc. The vertical motions decay
over time and the disc ultimately reaches a state of simultaneous hydrostatic
and radiative equilibrium.Comment: MNRAS accepted; 15 pages; 17 figures, 4 in colou
Constrained hyperbolic divergence cleaning in smoothed particle magnetohydrodynamics with variable cleaning speeds
We present an updated constrained hyperbolic/parabolic divergence cleaning
algorithm for smoothed particle magnetohydrodynamics (SPMHD) that remains
conservative with wave cleaning speeds which vary in space and time. This is
accomplished by evolving the quantity instead of . Doing so
allows each particle to carry an individual wave cleaning speed, , that
can evolve in time without needing an explicit prescription for how it should
evolve, preventing circumstances which we demonstrate could lead to runaway
energy growth related to variable wave cleaning speeds. This modification
requires only a minor adjustment to the cleaning equations and is trivial to
adopt in existing codes. Finally, we demonstrate that our constrained
hyperbolic/parabolic divergence cleaning algorithm, run for a large number of
iterations, can reduce the divergence of the field to an arbitrarily small
value, achieving to machine precision.Comment: 23 pages, 16 figures, accepted for publication in Journal of
Computational Physic
Measurements on fully wetted and ventilated ring wing hydrofoils
Force measurements and visual observations were made in a water tunnel on fully wetted and ventilated flows past a family of conical ring wings having a flat plate section geometry. The diameter-chord ratio was varied from one to three, and the total included cone angle was 12 degrees. The fully wetted flows all exhibited separation from the leading edge except for the largest diameter-chord ratio, a result which was in agreement with previous work. The effect of ventilation is to reduce markedly the lift curve slope. Pressure distribution measurements were also made under ventilating conditions for one member of this series. The effect of ventilation over only a portion of the circumference of the ring was also briefly investigated. Large cross forces were developed by such ventilation and some comparisons are made between this method of obtaining control forces and more conventional methods
The efficiency of star formation in clustered and distributed regions
We investigate the formation of both clustered and distributed populations of
young stars in a single molecular cloud. We present a numerical simulation of a
10,000 solar mass elongated, turbulent, molecular cloud and the formation of
over 2500 stars. The stars form both in stellar clusters and in a distributed
mode which is determined by the local gravitational binding of the cloud. A
density gradient along the major axis of the cloud produces bound regions that
form stellar clusters and unbound regions that form a more distributed
population. The initial mass function also depends on the local gravitational
binding of the cloud with bound regions forming full IMFs whereas in the
unbound, distributed regions the stellar masses cluster around the local Jeans
mass and lack both the high-mass and the low-mass stars. The overall efficiency
of star formation is ~ 15 % in the cloud when the calculation is terminated,
but varies from less than 1 % in the the regions of distributed star formation
to ~ 40 % in regions containing large stellar clusters. Considering that large
scale surveys are likely to catch clouds at all evolutionary stages, estimates
of the (time-averaged) star formation efficiency for the giant molecular cloud
reported here is only ~ 4 %. This would lead to the erroneous conclusion of
'slow' star formation when in fact it is occurring on a dynamical timescale.Comment: 9 pages, 8 figures, MNRAS in pres
The Design of a Continuous Wave Molecular Nitrogen Stimulated Raman Laser in the Visible Spectrum
Hollow-core photonic crystal fibers (HCPCFs) shows promise as a hybrid laser with higher nonlinear process limits and small beam size over long gain lengths. This work focuses on the design of a CW molecular nitrogen (N2) stimulated Raman laser. N2 offers Raman gains scaling up to 900 amg, scaling higher than H2. The cavity experiment showed the need to include Rayleigh scattering in the high pressure required for N2 Raman lasing. Even at relatively low pressure ssuch as 1,500 psi, high conversion percentages should be found if the fiber length is chosen based on the pump and gain, 15 m for N2 at 1500 psi with a predicted 87 conversion of the 4.2 W coupled from the 532 nm pump
- …