14 research outputs found

    Individual differences in the acquisition of a complex L2 phonology: A training study

    Get PDF
    Many learners of a foreign language (L2) struggle to correctly pronounce newly-learned speech sounds, yet many others achieve this with apparent ease. Here we explored how a training study of learning complex consonant clusters at the very onset of the L2 acquisition can inform us about L2 learning in general and individual differences in particular. To this end, adult Dutch native speakers were trained on Slovak words with complex consonant clusters (e.g., pstruh /pstrux/‘trout’, štvrť /ʃtvrc/ ‘quarter’) using auditory and orthographic input. In the same session following training, participants were tested on a battery of L2 perception and production tasks. The battery of L2 tests was repeated twice more with one week between each session. In the first session, an additional battery of control tests was used to test participants’ native language (L1) skills. Overall, in line with some previous research, participants showed only weak learning effects across the L2 perception tasks. However, there were considerable individual differences across all L2 tasks, which remained stable across sessions. Only two participants showed overall high L2 production performance that fell within 2 standard deviations of the mean ratings obtained for an L1 speaker. The mispronunciation detection task was the only perception task which significantly predicted production performance in the final session. We conclude by discussing several recommendations for future L2 learning studies

    Beyond the language given: The neurobiological infrastructure for pragmatic inferencing

    No full text

    Understanding speaker meaning: Neural correlates of pragmatic inferencing in language comprehension

    No full text
    Introduction: Natural communication is not only literal, but to a large extent also inferential. For example, sometimes people say "It is hard to give a good presentation" to actually mean "Your talk was a mess!", and listeners need to infer the speaker’s hidden message. In spite of the pervasiveness of this phenomenon in everyday communication, and even though the hidden meaning is often what it’s all about, very little is known about how the brain supports the comprehension of indirect language. What are the neural systems involved in the inferential process , and how are they different from those involved in word- and sentence-level meaning processing? We investigated the neural correlates of this so-called pragmatic inferencing in an fMRI study involving natural spoken dialogue. Methods: As a test case, we focused on the inferences needed to understand indirect replies. 18 native listeners of Dutch listened to dialogues ending in a question-answer (QA) pair. The final and critical utterance, e.g., "It is hard to give a good presentation", had different meanings depending on the dialogue context and the immediately preceding question: (1) Direct reply: Q: "How is it to give a good presentation?" A: "It is hard to give a good presentation" (2) Indirect reply, neutral: Q: "Will you give a presentation at the conference?" (rather than a poster) A: "It is hard to give a good presentation" (3) Indirect reply, face-saving: Q: "Did you like my presentation?" A: "It is hard to give a good presentation" While one of the indirect conditions was neutral, the other involved a socio-emotional aspect, as the reason for indirectness was to 'save one’s face' (as in excuses or polite refusals). Participants were asked to pay attention to the dialogues and, to ensure the latter, occasionally received a comprehension question (on filler items only). No other task demands were imposed. Results: Relative to direct replies in exchanges like (1), the indirect replies in exchanges like (2) and (3) activated brain structures associated with theory of mind and inferencing: right angular gyrus (TPJ), right DM prefrontal / frontal cortex (SMA, ACC). Both types of indirect replies also bilaterally activated the insula, an area known to be involved in empathy and affective processing. Moreover, both types of indirect replies recruited bilateral inferior frontal gyrus, thought to play a role in situation model updating. The comparison between neutral (2) and face-saving (3) indirect replies revealed that the presumed affective load of the face-saving replies activated just one additional area: right inferior frontal gyrus; we did not see any activation in classic affect-related areas. Importantly, we used the same critical sentences in all conditions. Our results can thus not be explained by lexico-semantic or other (e.g. syntactic, word frequency) factors. Conclusions: To extend neurocognitive research on meaning in language beyond the level of straightforward literal utterances, we investigated the neural correlates of pragmatic inferencing in an fMRI study involving indirect replies in natural spoken dialogue. Our findings reveal that the areas used to infer the intended meaning of an implicit message are partly different from the classic language network. Furthermore, the identity of the areas involved is consistent with the idea that inferring hidden meanings requires taking the speaker’s perspective. This confirms the importance of perspective taking in language comprehension, even in a situation where the listener is not the one addressed. Also, as the areas recruited by indirect replies generally do not light up in standard fMRI sentence comprehension paradigms, our study testifies to the importance of studying language understanding in richer contexts in which we can tap aspects of pragmatic processing, beyond the literal code
    corecore