78 research outputs found

    Directing cell therapy to anatomic target sites in vivo with magnetic resonance targeting

    Get PDF
    Cell-based therapy exploits modified human cells to treat diseases but its targeted application in specific tissues, particularly those lying deep in the body where direct injection is not possible, has been problematic. Here we use a magnetic resonance imaging (MRI) system to direct macrophages carrying an oncolytic virus, Seprehvir, into primary and metastatic tumour sites in mice. To achieve this, we magnetically label macrophages with super-paramagnetic iron oxide nanoparticles and apply pulsed magnetic field gradients in the direction of the tumour sites. Magnetic resonance targeting guides macrophages from the bloodstream into tumours, resulting in increased tumour macrophage infiltration and reduction in tumour burden and metastasis. Our study indicates that clinical MRI scanners can not only track the location of magnetically labelled cells but also have the potential to steer them into one or more target tissues

    A novel fully human antitumour immunoRNase targeting ErbB2-positive tumours

    Get PDF
    BACKGROUND: ErbB2 is an attractive target for immunotherapy, as it is a tyrosine kinase receptor overexpressed on tumour cells of different origin, with a key role in the development of malignancy. Trastuzumab, the only humanised anti-ErbB2 antibody currently used in breast cancer with success, can engender cardiotoxicity and a high fraction of patients is resistant to Trastuzumab treatment. METHODS: A novel human immunoRNase, called anti-ErbB2 human compact antibody-RNase (Erb-hcAb-RNase), made up of the compact anti-ErbB2 antibody Erbicin-human-compact Antibody (Erb-hcAb) and human pancreatic RNase (HP-RNase), has been designed, expressed in mammalian cell cultures and purified. The immunoRNase was then characterised as an enzymatic protein, and tested for its biological actions in vitro and in vivo on ErbB2-positive tumour cells. RESULTS: Erb-hcAb-RNase retains the enzymatic activity of HP-RNase and specifically binds to ErbB2-positive cells with an affinity comparable with that of the parental Erb-hcAb. Moreover, this novel immunoRNase is endowed with an effective and selective antiproliferative action for ErbB2-positive tumour cells both in vitro and in vivo. Its antitumour activity is more potent than that of the parental Erb-hcAb as the novel immunoconjugate has acquired RNase-based cytotoxicity in addition to the inhibitory growth effects, antibody-dependent and complement-dependent cytotoxicity of Erb-hcAb. CONCLUSION: Erb-hcAb-RNase could be a promising candidate for the immunotherapy of ErbB2-positive tumours

    Effects of cross-linked dimers of ribonuclease A or of lysozyme on the processing of endocytosed peroxidase by hepatoma cells.

    No full text
    Cross-linked dimers of ribonuclease, added at a concentration of 0.05 mg/ml to the culture medium of hepatoma (HTC) cells, were previously shown to inhibit intracellular degradation of peroxidase taken up by endocytosis. Intracellular localization showed that endocytosed peroxidase does not reach lysosomes in dimer-treated cells. The present study shows that preloading of lysosomes with fluorescent anti-peroxidase IgG, obtained by exposing HTC cells for 48 h to 0.1 mg of antibody/ml, restores intracellular degradation of endocytosed peroxidase. Moreover, accumulation of peroxidase into lysosomes, which no longer occurs in dimer-treated cells, occurs again under these conditions. We conclude that inhibition of transfer of peroxidase from phagosomes to lysosomes is most likely to be the alteration resulting from the exposure of the cells to ribonuclease dimer, rather than inhibition of fusion between phagosomes and lysosomes. The dimer of another basic protein, lysozyme added at a concentration of 0.2 mg/ml to the culture medium, is shown to induce the same type of effects as does the dimer of ribonuclease; the half-life of endocytosed peroxidase increased from 5 to 15 h after 2 h exposure of HTC cells to dimerized lysozyme. The effect of both dimers on intracellular protein processing can be reversed by addition of 100 mm-galactose to the culture medium, up to 5 h after pretreatment of the cells. The dimers of ribonuclease A or of lysozyme have thus probably the same mechanism of action. Evidence that the two dimers share the same binding sites on the cells is presented
    • …
    corecore