22 research outputs found

    Systemic Effects Induced by Hyperoxia in a Preclinical Model of Intra-abdominal Sepsis

    Get PDF
    Supplemental oxygen is a supportive treatment in patients with sepsis to balance tissue oxygen delivery and demand in the tissues. However, hyperoxia may induce some pathological effects. We sought to assess organ damage associated with hyperoxia and its correlation with the production of reactive oxygen species (ROS) in a preclinical model of intra-abdominal sepsis. For this purpose, sepsis was induced in male, Sprague-Dawley rats by cecal ligation and puncture (CLP). We randomly assigned experimental animals to three groups: control (healthy animals), septic (CLP), and sham-septic (surgical intervention without CLP). At 18 h after CLP, septic (n = 39), sham-septic (n = 16), and healthy (n = 24) animals were placed within a sealed Plexiglas cage and randomly distributed into four groups for continuous treatment with 21%, 40%, 60%, or 100% oxygen for 24 h. At the end of the experimental period, we evaluated serum levels of cytokines, organ damage biomarkers, histological examination of brain and lung tissue, and ROS production in each surviving animal. We found that high oxygen concentrations increased IL-6 and biomarkers of organ damage levels in septic animals, although no relevant histopathological lung or brain damage was observed. Healthy rats had an increase in IL-6 and aspartate aminotransferase at high oxygen concentration. IL-6 levels, but not ROS levels, are correlated with markers of organ damage. In our study, the use of high oxygen concentrations in a clinically relevant model of intra-abdominal sepsis was associated with enhanced inflammation and organ damage. These findings were unrelated to ROS release into circulation. Hyperoxia could exacerbate sepsis-induced inflammation, and it could be by itself detrimental. Our study highlights the need of developing safer thresholds for oxygen therapy

    Cohort study protocol: Bioresource in Adult Infectious Diseases (BioAID)

    Get PDF
    Introduction: Infectious diseases have a major impact on morbidity and mortality in hospital. Microbial diagnosis remains elusive for most cases of suspected infection which impacts on the use of antibiotics. Rapid advances in genomic technologies combined with high-quality phenotypic data have great potential to improve the diagnosis, management and clinical outcomes of infectious diseases.  The aim of the Bioresource in Adult Infectious Diseases (BioAID) is to provide a platform for biomarker discovery, trials and clinical service developments in the field of infectious diseases, by establishing a registry linking clinical phenotype to microbial and biological samples in adult patients who attend hospital with suspected infection. Methods and analysis: BioAID is a cohort study which employs deferred consent to obtain an additional 2.5mL RNA blood sample from patients who attend the Emergency Department (ED) with suspected infection when they undergo peripheral blood culture sampling.  Clinical data and additional biological samples including DNA, serum and microbial isolates are obtained from BioAID participants during hospital admission.  Participants are also asked to consent to be recalled for future studies. BioAID aims to recruit 10,000 patients from 5-8 sites across England.  Since February 2014 >4000 individuals have been recruited to the study.  The final cohort will be characterised using descriptive statistics including information on the number of cases that can be linked to biological and microbial samples to support future research studies. Ethical approval and section 251 exemption have been obtained for BioAID researchers to seek deferred consent from patients from whom a RNA specimen has been collected. Samples and meta-data obtained through BioAID will be made available to researchers worldwide following submission of an application form and research protocol.   Conclusions: BioAID will support a range of study designs spanning discovery science, biomarker validation, disease pathogenesis and epidemiological analyses of clinical infection syndromes

    Endotoxin-induced lung alveolar cell injury causes brain cell damage

    No full text
    Sepsis is the most common cause of acute respiratory distress syndrome, a severe lung inflammatory disorder with an elevated morbidity and mortality. Sepsis and acute respiratory distress syndrome involve the release of inflammatory mediators to the systemic circulation, propagating the cellular and molecular response and affecting distal organs, including the brain. Since it has been reported that sepsis and acute respiratory distress syndrome contribute to brain dysfunction, we investigated the brain-lung crosstalk using a combined experimental in vitro airway epithelial and brain cell injury model. Conditioned medium collected from an in vitro lipopolysaccharide-induced airway epithelial cell injury model using human A549 alveolar cells was subsequently added at increasing concentrations (no conditioned, 2%, 5%, 10%, 15%, 25%, and 50%) to a rat mixed brain cell culture containing both astrocytes and neurons. Samples from culture media and cells from mixed brain cultures were collected before treatment, and at 6 and 24\u2009h for analysis. Conditioned medium at 15% significantly increased apoptosis in brain cell cultures 24\u2009h after treatment, whereas 25% and 50% significantly increased both necrosis and apoptosis. Levels of brain damage markers S100 calcium binding protein B and neuron-specific enolase, interleukin-6, macrophage inflammatory protein-2, as well as matrix metalloproteinase-9 increased significantly after treating brain cells with 652% conditioned medium. Our findings demonstrated that human epithelial pulmonary cells stimulated with bacterial lipopolysaccharide release inflammatory mediators that are able to induce a translational clinically relevant and harmful response in brain cells. These results support a brain-lung crosstalk during sepsis and sepsis-induced acute respiratory distress syndrom
    corecore