13 research outputs found

    Intravascular Functional Maps of Common Neurovascular Lesions Derived From Volumetric 4D CT Data

    No full text
    Purpose: Current computed tomography angiography (CTA) postprocessing tools do not support quantitative assessment of intravascular physiology. Dynamic volumetric CT, acquired at a sufficiently high temporal resolution, is ideal for such analysis. Following preliminary experiments in flow phantoms, we examine the segmentation of blood vessels from 4D CT angiography by curve fit and encoding of functional blood flow information into the resulting functional intravascular maps. Materials and Methods: Flow phantoms were constructed consisting of a single pipe input and 4 simultaneous outputs of varying flow rates. Two outflow pipe diameters were tested. Bolus transit time (TT), time to peak (TTP), and time of arrival (TOA) were analyzed using contrast bolus profiles generated from 4D volumetric CT examinations on a 320 detector scanner in regions of interest placed 10 cm apart in all outflow pipes. Six subjects with various neurovascular lesions were next examined using a volumetric contrast- enhanced 4D CT angiography protocol. Segmentation was performed by quadratic curve fit after comparative analysis and optimization of the segmentation technique using quadratic curves, the gamma variate function, and a simplified formulation of the gamma variate function. After segmentation, quantitative analysis of spatially congruent intravascular voxels including TTP, rise, TT, and slope of the contrast upstroke was employed to encode physiologic information into the segmentations and produce intravascular functional maps. Comparison was made in each case to the patient's routine imaging. Results: Increasing volumetric flow rates correspond to reduction of bolus TT in flow phantoms. TT elongation was observed as the contrast bolus moved distally in all pipes, with greater elongation seen at slower flow rates and larger pipe diameters. A greater difference was observed between TTP proximally and distally in pipes compared with TOA, an effect most prominent at slower flow rates and larger pipe lumens, and thus TTP was chosen for functional encoding into segmentations of the clinical series. In vivo, the quadratic function demonstrated the lowest coefficient of variation when fit to intravascular time density series and outperformed 2 formulations of the gamma variate function. After segmentation with quadratic curves, Gaussian distributions were chosen over gamma variate functions to characterize contrast bolus profiles while neglecting recirculation and to calculate functional parameters for spatial encoding. Intravascular functional maps free of bone artifacts were created in every case that demonstrated all appropriate vessels and showed agreement with conventional imaging modalities in terms of vessel delineation and the diagnosis of vascular pathology. The most useful and interesting functional maps are discussed in each case. Conclusions: The above approach to quantitative CT angiography provides a method of evaluating dynamic CTA data by means of intravascular functional maps. The techniques are broadly applicable in the clinical assessment of a variety of vascular diseases.Scientific Assessment and Innovation in Neurosurgical Treatment Strategie

    Dynamic CT angiography and CT perfusion employing a 320-detector row CT: Protocol and current clinical applications

    No full text
    The aim of this study is to report the authors' initial clinical experience of a 320-detector row computed tomography (CT) scanner in cerebrovascular disorders. Volumetric CT using the full 160-mm width of the 320 detector rows enables full brain coverage in a single rotation that allows for combined time-resolved whole-brain perfusion and four-dimensional CT angiography (CTA). The protocol for the combined dynamic CTA and CT perfusion (CTP) is presented, and its potential applications in stroke, stenoocclusive disease, arteriovenous malformations and dural shunts are reviewed based on clinical examples. The combined CTA/CTP data can provide visualization of dynamic flow and perfusion as well as motion of an entire volume at very short time intervals which is of importance in a variety of pathologies with altered cerebral hemodynamics. The broad coverage enabled by 320 detector rows offers z-axis coverage allowing for whole-brain perfusion and subtracted dynamic angiography of the entire intracranial circulation. \ua9 2009 Urban & Vogel

    Longitudinal assessment of right ventricular structure and function by cardiovascular magnetic resonance in breast cancer patients treated with trastuzumab: a prospective observational study

    No full text
    Abstract Background There are limited data on the effects of trastuzumab on the right ventricle (RV). Therefore, we sought to evaluate the temporal changes in right ventricular (RV) structure and function as measured by cardiovascular magnetic resonance (CMR), and their relationship with left ventricular (LV) structure and function in breast cancer patients treated with trastuzumab. Methods Prospective, longitudinal, observational study involving 41 women with HER2+ breast cancer who underwent serial CMR at baseline, 6, 12, and 18 months after initiation of trastuzumab. A single blinded observer measured RV parameters on de-identified CMRs in a random order. Linear mixed models were used to investigate temporal changes in RV parameters. Results Of the 41 women (age 52 ± 11 years), only one patient experienced trastuzumab-induced cardiotoxicity. Compared to baseline, there were small but significant increases in the RV end-diastolic volume at 6 months (p = 0.002) and RV end-systolic volume at 6 and 12 months (p < 0.001 for both), but not at 18 months (p = 0.82 and 0.13 respectively). RV ejection fraction (RVEF), when compared to baseline (58.3%, 95% CI 57.1–59.5%), showed corresponding decreases at 6 months (53.9%, 95% CI 52.5–55.4%, p < 0.001) and 12 months (55%, 95% CI 53.8–56.2%, p < 0.001) that recovered at 18 months (56.6%, 95% CI 55.1–58.0%, p = 0.08). Although the temporal pattern of changes in LVEF and RVEF were similar, there was no significant correlation between RVEF and LVEF at baseline (r = 0.29, p = 0.07) or between their changes at 6 months (r = 0.24, p = 0.17). Conclusion In patients receiving trastuzumab without overt cardiotoxicity, there is a subtle but significant deleterious effect on RV structure and function that recover at 18 months, which can be detected by CMR. Furthermore, monitoring of LVEF alone may not be sufficient in detecting early RV injury. These novel findings provide further support for CMR in monitoring early cardiotoxicity. Trial registration ClinicalTrials.gov Identifier: NCT01022086 . Date of registration: November 27, 2009
    corecore