50 research outputs found

    Influence of in ovo prebiotic and synbiotic administration on meat quality of broiler chickens

    Get PDF
    ABSTRACT A trial was conducted to evaluate the effect of in ovo injection of prebiotic and synbiotics on growth performance, meat quality traits (cholesterol content, intramuscular collagen properties, fiber measurements), and the presence of histopathological changes in the pectoral muscle (PS) of broiler chickens. On d 12 of incubation, 480 eggs were randomly divided into 5 experimental groups treated with different bioactives, in ovo injected: C, control with physiological saline; T1 with 1.9 mg of raffinose family oligosaccharides; T2 and T3 with 1.9 mg of raffinose family oligosaccharides enriched with different probiotic bacteria, specifically 1,000 cfu of Lactococcus lactis ssp. lactis SL1 and Lactococcus lactis ssp. cremoris IBB SC1, respectively; T4 with commercially available synbiotic Duolac, containing 500 cfu of both Lactobacillus acidophilus and Streptococcus faecium with the addition of lactose (0.001 mg/embryo). Among the hatched chickens, 60 males were randomly chosen (12 birds for each group) and were grown to 42 d in collective cages (n = 3 birds in each 4 cages: replications for experimental groups). Broilers were fed ad libitum commercial diets according to age. In ovo prebiotic and synbiotic administration had a low effect on investigated traits, but depend on the kind of bioactives administered. Commercial synbiotic treatment (T4) reduced carcass yield percentage, and the feed conversion ratio was higher in T3 and T4 groups compared with other groups. The abdominal fat, the ultimate pH, and cholesterol of the PS were not affected by treatment. Broiler chickens of the treated groups with both slightly greater PS and fiber diameter had a significantly lower amount of collagen. The greater thickness of muscle fibers (not significant) and the lower fiber density (statistically significant), observed in treated birds in comparison with those of the C group, are not associated with histopathological changes in the PS of broilers. The incidence of histopathological changes in broiler chickens from examined groups was low, which did not affect the deterioration of meat quality obtained from these birds

    From DNA sequence to application: possibilities and complications

    Get PDF
    The development of sophisticated genetic tools during the past 15 years have facilitated a tremendous increase of fundamental and application-oriented knowledge of lactic acid bacteria (LAB) and their bacteriophages. This knowledge relates both to the assignments of open reading frames (ORF’s) and the function of non-coding DNA sequences. Comparison of the complete nucleotide sequences of several LAB bacteriophages has revealed that their chromosomes have a fixed, modular structure, each module having a set of genes involved in a specific phase of the bacteriophage life cycle. LAB bacteriophage genes and DNA sequences have been used for the construction of temperature-inducible gene expression systems, gene-integration systems, and bacteriophage defence systems. The function of several LAB open reading frames and transcriptional units have been identified and characterized in detail. Many of these could find practical applications, such as induced lysis of LAB to enhance cheese ripening and re-routing of carbon fluxes for the production of a specific amino acid enantiomer. More knowledge has also become available concerning the function and structure of non-coding DNA positioned at or in the vicinity of promoters. In several cases the mRNA produced from this DNA contains a transcriptional terminator-antiterminator pair, in which the antiterminator can be stabilized either by uncharged tRNA or by interaction with a regulatory protein, thus preventing formation of the terminator so that mRNA elongation can proceed. Evidence has accumulated showing that also in LAB carbon catabolite repression in LAB is mediated by specific DNA elements in the vicinity of promoters governing the transcription of catabolic operons. Although some biological barriers have yet to be solved, the vast body of scientific information presently available allows the construction of tailor-made genetically modified LAB. Today, it appears that societal constraints rather than biological hurdles impede the use of genetically modified LAB.

    Adaptative Potential of the Lactococcus Lactis IL594 Strain Encoded in Its 7 Plasmids

    Get PDF
    The extrachromosomal gene pool plays a significant role both in evolution and in the environmental adaptation of bacteria. The L. lactis subsp. lactis IL594 strain contains seven plasmids, named pIL1 to pIL7, and is the parental strain of the plasmid-free L. lactis IL1403, which is one of the best characterized lactococcal strains of LAB. Complete nucleotide sequences of pIL1 (6,382 bp), pIL2 (8,277 bp), pIL3 (19,244 bp), pIL4 (48,979), pIL5 (23,395), pIL6 (28,435 bp) and pIL7 (28,546) were established and deposited in the generally accessible database (GeneBank). Nine highly homologous repB-containing replicons, belonging to the lactococcal theta-type replicons, have been identified on the seven plasmids. Moreover, a putative region involved in conjugative plasmid mobilization was found on four plasmids, through identification of the presence of mob genes and/or oriT sequences. Detailed bioinformatic analysis of the plasmid nucleotide sequences provided new insight into the repertoire of plasmid-encoded functions in L. lactis, and indicated that plasmid genes from IL594 strain can be important for L. lactis adaptation to specific environmental conditions (e.g. genes coding for proteins involved in DNA repair or cold shock response) as well as for technological processes (e.g. genes encoding citrate and lactose utilization, oligopeptide transport, restriction-modification system). Moreover, global gene analysis indicated cooperation between plasmid- and chromosome-encoded metabolic pathways

    New Metric for World Wide Web Service Quality

    No full text
    The main topic of this paper is the quality of the WWW service evaluation. The authors present well-known measurement methods, and present the new “Power” metric for quality, advocating it as a method of assessing the quality of such service. This metric is based on the most important network parameters that affect any assessment of the WWW service, i.e. Web page opening time and download data transfer rate. The new method is easy to implement, fast in operation, and provides stable and repeatable results

    Tryptophan biosynthesis genes in Lactococcus lactis subsp. lactis.

    No full text
    The Lactococcus lactis chromosomal region containing the seven structural genes required for tryptophan biosynthesis was characterized by cloning and sequencing. All of the trp genes were identified by the homology of their products with known Trp proteins from other organisms. The identification was confirmed for five genes by their ability to complement trp mutations in Escherichia coli. The seven structural genes are present in the order trpEGDCFBA and span a 7,968-bp segment. Each gene is preceded by a putative ribosome binding site complementary to the 3' end of the L. lactis 16S rRNA. Three pairs of genes (trpG-trpD, trpC-trpF, and trpB-trpA) overlap, and there is intercistronic spacing of 124, 46, and 585 bp between the trpE-trpG, trpD-trpC, and trpF-trpB gene pairs, respectively. No gene fusion was found. Upstream of the trp genes, a 457-bp noncoding DNA segment contains several regions fitting the consensus for gram-positive promoters and one region strongly resembling a transcription terminator. However, it seems unlikely that an attenuation mechanism similar to the one found in E. coli regulates tryptophan biosynthesis in L. lactis, since no potential leader peptide was detected. We propose that a mechanisms resembling that described in Bacillus spp. can regulate trp genes expression in L. lactis
    corecore