1,670 research outputs found

    Experimental experience with flexible structures

    Get PDF
    The focus is on a flexible structure experiment developed at the California Institute of Technology. The main thrust of the experiment is to address the identification and robust control issues associated with large space structures by capturing their characteristics in the laboratory. The design, modeling, identification and control objectives will be discussed. Also, the subject of uncertainty in structural plant models and the frequency shaping of performance objectives will be expounded upon. Theoretical and experimental results of control laws designed using the identified model and uncertainty descriptions will be presented

    Parameter estimation of large flexible aerospace structures with application to the control of the Maypole Deployable Reflector

    Get PDF
    Systems such as the Maypole deployable reflector have a distributed parameter nature. The flexible column and hoop structure and the circular antenna of 30-100 meter diameter which it supports are described by partial, rather than ordinary, differential equations. Progress completed in reduced order modelling andd controller design and digital parameter estimation and control is summarized. Topics covered include depolyment and on-orbit operation; quasi-static (steady state) operation; dynamic distributed parameter system; autoregressive moving average identification; frequency domain procedures; direct or implicit active control; adaptive observers; parameter estimation using a linear reinforcement learning factor; feedback control; and reduced order modeling for nonlinear systems

    Percolation-like Scaling Exponents for Minimal Paths and Trees in the Stochastic Mean Field Model

    Full text link
    In the mean field (or random link) model there are nn points and inter-point distances are independent random variables. For 0<<0 < \ell < \infty and in the nn \to \infty limit, let δ()=1/n×\delta(\ell) = 1/n \times (maximum number of steps in a path whose average step-length is \leq \ell). The function δ()\delta(\ell) is analogous to the percolation function in percolation theory: there is a critical value =e1\ell_* = e^{-1} at which δ()\delta(\cdot) becomes non-zero, and (presumably) a scaling exponent β\beta in the sense δ()()β\delta(\ell) \asymp (\ell - \ell_*)^\beta. Recently developed probabilistic methodology (in some sense a rephrasing of the cavity method of Mezard-Parisi) provides a simple albeit non-rigorous way of writing down such functions in terms of solutions of fixed-point equations for probability distributions. Solving numerically gives convincing evidence that β=3\beta = 3. A parallel study with trees instead of paths gives scaling exponent β=2\beta = 2. The new exponents coincide with those found in a different context (comparing optimal and near-optimal solutions of mean-field TSP and MST) and reinforce the suggestion that these scaling exponents determine universality classes for optimization problems on random points.Comment: 19 page

    Stable Direct Adaptive Control of Linear Infinite-dimensional Systems Using a Command Generator Tracker Approach

    Get PDF
    A command generator tracker approach to model following contol of linear distributed parameter systems (DPS) whose dynamics are described on infinite dimensional Hilbert spaces is presented. This method generates finite dimensional controllers capable of exponentially stable tracking of the reference trajectories when certain ideal trajectories are known to exist for the open loop DPS; we present conditions for the existence of these ideal trajectories. An adaptive version of this type of controller is also presented and shown to achieve (in some cases, asymptotically) stable finite dimensional control of the infinite dimensional DPS

    Identification of flexible structures for robust control

    Get PDF
    Documentation is provided of the authors' experience with modeling and identification of an experimental flexible structure for the purpose of control design, with the primary aim being to motivate some important research directions in this area. A multi-input/multi-output (MIMO) model of the structure is generated using the finite element method. This model is inadequate for control design, due to its large variation from the experimental data. Chebyshev polynomials are employed to fit the data with single-input/multi-output (SIMO) transfer function models. Combining these SIMO models leads to a MIMO model with more modes than the original finite element model. To find a physically motivated model, an ad hoc model reduction technique which uses a priori knowledge of the structure is developed. The ad hoc approach is compared with balanced realization model reduction to determine its benefits. Descriptions of the errors between the model and experimental data are formulated for robust control design. Plots of select transfer function models and experimental data are included

    Robustness and performance trade-offs in control design for flexible structures

    Get PDF
    Linear control design models for flexible structures are only an approximation to the “real” structural system. There are always modeling errors or uncertainty present. Descriptions of these uncertainties determine the trade-off between achievable performance and robustness of the control design. In this paper it is shown that a controller synthesized for a plant model which is not described accurately by the nominal and uncertainty models may be unstable or exhibit poor performance when implemented on the actual system. In contrast, accurate structured uncertainty descriptions lead to controllers which achieve high performance when implemented on the experimental facility. It is also shown that similar performance, theoretically and experimentally, is obtained for a surprisingly wide range of uncertain levels in the design model. This suggests that while it is important to have reasonable structured uncertainty models, it may not always be necessary to pin down precise levels (i.e., weights) of uncertainty. Experimental results are presented which substantiate these conclusions

    Controller reduction for effective interdisciplinary design of active structures

    Get PDF
    Control problems of large aerospace structures are intrinsically interdisciplinary and require strategies which address the complete interaction between flexible structures, electromechanical actuators and sensors, and feedback control algorithms. Current research and future directions which will require an interdisciplinary team effort in dynamics, control and optimization of such structures are being surveyed. It is generally agreed that the dynamics of space structures require large scale discrete modeling, resulting in thousands of discrete unknowns. Proven control strategies, on the other hand, employ a low order controller that is based on a reduced order model of structures. Integration of such low order controllers and large scale dynamics models often leads to serious deterioration of the closed loop stability margin and even instability. To alleviate this stability deterioration while low order controllers remain effective, the following approach was investigated: (1) retain low order controllers based on reduced order models of structures as the basic control strategy; (2) introduce a compensator that will directly account for the deterioration of stability margin due to controller-structure integration; and (3) assess overall performance of the integrated control structure system by developing measures of suboptimality in the combination of (1) and (2). The benefits include: simplicity in the design of basic controllers, thus facilitating the optimization of structure control interactions; increased understanding of the roles of the compensator so as to modify the structure as well as the basic controller, if necessary, for improved performance; and adaptability to localize controllers by viewing the compensator as a systems integration filter

    Feedback control laws for highly maneuverable aircraft

    Get PDF
    The results of a study of the application of H infinity and mu synthesis techniques to the design of feedback control laws for the longitudinal dynamics of the High Angle of Attack Research Vehicle (HARV) are presented. The objective of this study is to develop methods for the design of feedback control laws which cause the closed loop longitudinal dynamics of the HARV to meet handling quality specifications over the entire flight envelope. Control law designs are based on models of the HARV linearized at various flight conditions. The control laws are evaluated by both linear and nonlinear simulations of typical maneuvers. The fixed gain control laws resulting from both the H infinity and mu synthesis techniques result in excellent performance even when the aircraft performs maneuvers in which the system states vary significantly from their equilibrium design values. Both the H infinity and mu synthesis control laws result in performance which compares favorably with an existing baseline longitudinal control law

    Robust Region-of-Attraction Estimation

    Get PDF
    We propose a method to compute invariant subsets of the region-of-attraction for asymptotically stable equilibrium points of polynomial dynamical systems with bounded parametric uncertainty. Parameter-independent Lyapunov functions are used to characterize invariant subsets of the robust region-of-attraction. A branch-and-bound type refinement procedure reduces the conservatism. We demonstrate the method on an example from the literature and uncertain controlled short-period aircraft dynamics
    corecore