5,655 research outputs found

    Shear-banding in a lyotropic lamellar phase, Part 2: Temporal fluctuations

    Full text link
    We analyze the temporal fluctuations of the flow field associated to a shear-induced transition in a lyotropic lamellar phase: the layering transition of the onion texture. In the first part of this work [Salmon et al., submitted to Phys. Rev. E], we have evidenced banded flows at the onset of this shear-induced transition which are well accounted for by the classical picture of shear-banding. In the present paper, we focus on the temporal fluctuations of the flow field recorded in the coexistence domain. These striking dynamics are very slow (100--1000s) and cannot be due to external mechanical noise. Using velocimetry coupled to structural measurements, we show that these fluctuations are due to a motion of the interface separating the two differently sheared bands. Such a motion seems to be governed by the fluctuations of σ⋆\sigma^\star, the local stress at the interface between the two bands. Our results thus provide more evidence for the relevance of the classical mechanical approach of shear-banding even if the mechanism leading to the fluctuations of σ⋆\sigma^\star remains unclear

    Shear-banding in a lyotropic lamellar phase, Part 1: Time-averaged velocity profiles

    Full text link
    Using velocity profile measurements based on dynamic light scattering and coupled to structural and rheological measurements in a Couette cell, we present evidences for a shear-banding scenario in the shear flow of the onion texture of a lyotropic lamellar phase. Time-averaged measurements clearly show the presence of structural shear-banding in the vicinity of a shear-induced transition, associated to the nucleation and growth of a highly sheared band in the flow. Our experiments also reveal the presence of slip at the walls of the Couette cell. Using a simple mechanical approach, we demonstrate that our data confirms the classical assumption of the shear-banding picture, in which the interface between bands lies at a given stress σ⋆\sigma^\star. We also outline the presence of large temporal fluctuations of the flow field, which are the subject of the second part of this paper [Salmon {\it et al.}, submitted to Phys. Rev. E]

    Surface compositional mapping by spectral ratioing of ERTS-1 MSS data in the Wind River Basin and Range, Wyoming

    Get PDF
    The author has identified the following significant results. ERTS data collected in August and October 1972 were processed on digital and special purpose analog recognition computers using ratio enhancement and pattern recognition. Ratios of band-averaged laboratory reflectances of some minerals and rock types known to be in the scene compared favorably with ratios derived from the data by ratio normalization procedures. A single ratio display and density slice of the visible channels of ERTS MSS data, Channel 5/Channel 4 (R5,4), separated the Triassic Chugwater formation (redbeds) from other formations present and may have enhanced iron oxide minerals present at the surface in abundance. Comparison of data sets collected over the same area at two different times of the year by digital processing indicated that spectral variation due to environmental factors was reduced by ratio processing

    An optical fiber based interferometer to measure velocity profiles in sheared complex fluids

    Full text link
    We describe an optical fiber based interferometer to measure velocity profiles in sheared complex fluids using Dynamic Light Scattering (DLS). After a review of the theoretical problem of DLS under shear, a detailed description of the setup is given. We outline the various experimental difficulties induced by refraction when using a Couette cell. We also show that homodyne DLS is not well suited to measure quantitative velocity profiles in narrow-gap Couette geometries. On the other hand, the heterodyne technique allows us to determine the velocity field inside the gap of a Couette cell. All the technical features of the setup, namely its spatial resolution (≈50\approx 50--100μ100 \mum) and its temporal resolution (≈1\approx 1 s per point, ≈1\approx 1 min per profile) are discussed, as well as the calibration procedure with a Newtonian fluid. As briefly shown on oil-in-water emulsions, such a setup permits one to record both velocity profiles and rheological data simultaneouslyComment: 13 pages, 16 figures, Submitted to Eur. Phys. J. A

    Velocity Profiles in Slowly Sheared Bubble Rafts

    Full text link
    Measurements of average velocity profiles in a bubble raft subjected to slow, steady-shear demonstrate the coexistence between a flowing state and a jammed state similar to that observed for three-dimensional foams and emulsions [Coussot {\it et al,}, Phys. Rev. Lett. {\bf 88}, 218301 (2002)]. For sufficiently slow shear, the flow is generated by nonlinear topological rearrangements. We report on the connection between this short-time motion of the bubbles and the long-time averages. We find that velocity profiles for individual rearrangement events fluctuate, but a smooth, average velocity is reached after averaging over only a relatively few events.Comment: typos corrected, figures revised for clarit

    Slow flows of an relativistic perfect fluid in a static gravitational field

    Full text link
    Relativistic hydrodynamics of an isentropic fluid in a gravitational field is considered as the particular example from the family of Lagrangian hydrodynamic-type systems which possess an infinite set of integrals of motion due to the symmetry of Lagrangian with respect to relabeling of fluid particle labels. Flows with fixed topology of the vorticity are investigated in quasi-static regime, when deviations of the space-time metric and the density of fluid from the corresponding equilibrium configuration are negligibly small. On the base of the variational principle for frozen-in vortex lines dynamics, the equation of motion for a thin relativistic vortex filament is derived in the local induction approximation.Comment: 4 pages, revtex, no figur

    Velocity profiles in shear-banding wormlike micelles

    Full text link
    Using Dynamic Light Scattering in heterodyne mode, we measure velocity profiles in a much studied system of wormlike micelles (CPCl/NaSal) known to exhibit both shear-banding and stress plateau behavior. Our data provide evidence for the simplest shear-banding scenario, according to which the effective viscosity drop in the system is due to the nucleation and growth of a highly sheared band in the gap, whose thickness linearly increases with the imposed shear rate. We discuss various details of the velocity profiles in all the regions of the flow curve and emphasize on the complex, non-Newtonian nature of the flow in the highly sheared band.Comment: 4 pages, 5 figures, submitted to Phys. Rev. Let

    Effective interaction quenching in artificial kagom\'e spin chains

    Full text link
    Achieving thermal equilibrium in two-dimensional lattices of interacting nanomagnets has been a key issue on the route to study exotic phases in artificial frustrated magnets. We revisit this issue in artificial one-dimensional kagom\'e spin chains. Imaging arrested micro-states generated by a field demagnetization protocol and analyzing their pairwise spin correlations in real space, we unveil a non-equilibrated physics. Remarkably, this physics can be reformulated into an at-equilibrium one by rewriting the associated spin Hamiltonian in such a way that one of the coupling constants is quenched. We ascribe this effective behavior to a kinetic hinderance during the demagnetization protocol, which induces the formation of local flux closure spin configurations that sometimes compete with the magnetostatic interaction.Comment: 8 pages, 5 figure

    The bright-end galaxy candidates at z ~ 9 from 79 independent HST fields

    Get PDF
    We present a full data analysis of the pure-parallel Hubble Space Telescope (HST) imaging observations in the Brightest of Reionizing Galaxies Survey (BoRG[z9]) in Cycle 22. The medium-deep exposures with five HST/WFC3IR+UVIS filter bands from 79 independent sightlines (~370 arcmin^2) provide the least biased determination of number density for z>9 bright galaxies against cosmic variance. After a strict two-step selection for candidate galaxies, including dropout color and photometric redshift analyses, and revision of previous BoRG candidates, we identify one source at z~10 and two sources at z~9. The z~10 candidate shows evidence of line-of-sight lens magnification (mu~1.5), yet it appears surprisingly luminous (MUV ~ -22.6\pm0.3 mag), making it one of the brightest candidates at z > 8 known (~ 0.3 mag brighter than the z = 8.68 galaxy EGSY8p7, spectroscopically confirmed by Zitrin and collaborators). For z ~ 9 candidates, we include previous data points at fainter magnitudes and find that the data are well fitted by a Schechter luminosity function with alpha ~ -2.1, MUV ~ -21.5 mag, and log phi ~ -4.5 Mpc^-3mag^-1, for the first time without fixing any parameters. The inferred cosmic star formation rate density is consistent with unaccelerated evolution from lower redshift.Comment: 18pages, 7figures, 6tables. accepted to the Astrophysical Journa
    • …
    corecore