4,288 research outputs found

    Heralded Two-Photon Entanglement from Probabilistic Quantum Logic Operations on Multiple Parametric Down-Conversion Sources

    Get PDF
    An ideal controlled-NOT gate followed by projective measurements can be used to identify specific Bell states of its two input qubits. When the input qubits are each members of independent Bell states, these projective measurements can be used to swap the post-selected entanglement onto the remaining two qubits. Here we apply this strategy to produce heralded two-photon polarization entanglement using Bell states that originate from independent parametric down-conversion sources, and a particular probabilistic controlled-NOT gate that is constructed from linear optical elements. The resulting implementation is closely related to an earlier proposal by Sliwa and Banaszek [quant-ph/0207117], and can be intuitively understood in terms of familiar quantum information protocols. The possibility of producing a ``pseudo-demand'' source of two-photon entanglement by storing and releasing these heralded pairs from independent cyclical quantum memory devices is also discussed.Comment: 5 pages, 4 figures; submitted to IEEE Journal of Selected Topics in Quantum Electronics, special issue on "Quantum Internet Technologies

    Distributed Formal Concept Analysis Algorithms Based on an Iterative MapReduce Framework

    Get PDF
    While many existing formal concept analysis algorithms are efficient, they are typically unsuitable for distributed implementation. Taking the MapReduce (MR) framework as our inspiration we introduce a distributed approach for performing formal concept mining. Our method has its novelty in that we use a light-weight MapReduce runtime called Twister which is better suited to iterative algorithms than recent distributed approaches. First, we describe the theoretical foundations underpinning our distributed formal concept analysis approach. Second, we provide a representative exemplar of how a classic centralized algorithm can be implemented in a distributed fashion using our methodology: we modify Ganter's classic algorithm by introducing a family of MR* algorithms, namely MRGanter and MRGanter+ where the prefix denotes the algorithm's lineage. To evaluate the factors that impact distributed algorithm performance, we compare our MR* algorithms with the state-of-the-art. Experiments conducted on real datasets demonstrate that MRGanter+ is efficient, scalable and an appealing algorithm for distributed problems.Comment: 17 pages, ICFCA 201, Formal Concept Analysis 201

    Four-dimensional laser induced fluorescence study of the structure of molecular mixing in turbulent flows

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/77075/1/AIAA-1994-820-515.pd

    Local and Global Distinguishability in Quantum Interferometry

    Get PDF
    A statistical distinguishability based on relative entropy characterises the fitness of quantum states for phase estimation. This criterion is employed in the context of a Mach-Zehnder interferometer and used to interpolate between two regimes, of local and global phase distinguishability. The scaling of distinguishability in these regimes with photon number is explored for various quantum states. It emerges that local distinguishability is dependent on a discrepancy between quantum and classical rotational energy. Our analysis demonstrates that the Heisenberg limit is the true upper limit for local phase sensitivity. Only the `NOON' states share this bound, but other states exhibit a better trade-off when comparing local and global phase regimes.Comment: 4 pages, in submission, minor revision

    Simulations of atomic trajectories near a dielectric surface

    Get PDF
    We present a semiclassical model of an atom moving in the evanescent field of a microtoroidal resonator. Atoms falling through whispering-gallery modes can achieve strong, coherent coupling with the cavity at distances of approximately 100 nanometers from the surface; in this regime, surface-induced Casmir-Polder level shifts become significant for atomic motion and detection. Atomic transit events detected in recent experiments are analyzed with our simulation, which is extended to consider atom trapping in the evanescent field of a microtoroid.Comment: 29 pages, 10 figure

    General linear-optical quantum state generation scheme: Applications to maximally path-entangled states

    Full text link
    We introduce schemes for linear-optical quantum state generation. A quantum state generator is a device that prepares a desired quantum state using product inputs from photon sources, linear-optical networks, and postselection using photon counters. We show that this device can be concisely described in terms of polynomial equations and unitary constraints. We illustrate the power of this language by applying the Grobner-basis technique along with the notion of vacuum extensions to solve the problem of how to construct a quantum state generator analytically for any desired state, and use methods of convex optimization to identify bounds to success probabilities. In particular, we disprove a conjecture concerning the preparation of the maximally path-entangled |n,0)+|0,n) (NOON) state by providing a counterexample using these methods, and we derive a new upper bound on the resources required for NOON-state generation.Comment: 5 pages, 2 figure

    From Linear Optical Quantum Computing to Heisenberg-Limited Interferometry

    Get PDF
    The working principles of linear optical quantum computing are based on photodetection, namely, projective measurements. The use of photodetection can provide efficient nonlinear interactions between photons at the single-photon level, which is technically problematic otherwise. We report an application of such a technique to prepare quantum correlations as an important resource for Heisenberg-limited optical interferometry, where the sensitivity of phase measurements can be improved beyond the usual shot-noise limit. Furthermore, using such nonlinearities, optical quantum nondemolition measurements can now be carried out at the single-photon level.Comment: 10 pages, 5 figures; Submitted to a Special Issue of J. Opt. B on "Fluctuations and Noise in Photonics and Quantum Optics" (Herman Haus Memorial Issue); v2: minor change

    Identification and characterization of an imidazolium by-product formed during the synthesis of 4-methylmethcathinone (mephedrone)

    Get PDF
    4-Methylmethcathinone (2-methylamino-1-(4-methylphenyl)propan-1-one, mephedrone) is a psychoactive substance that has been associated with recreational use worldwide. Analytical data related to mephedrone are abundantly available but the characterization of by-products obtained during organic synthesis remains to be explored. This study presents the identification of a 1,2,3,5-tetramethyl-4-(4-methylphenyl)-1H-imidazol-3-ium salt (TMMPI), which was formed during the synthesis of mephedrone. When diethyl ether was added to the crude reaction product, solid material precipitated from the solution. Analytical characterization of TMMPI employed a range of analytical techniques including chromatographic analysis in combination with various mass spectrometric detection methods, nuclear magnetic resonance spectroscopy, and crystal structure analysis. Additional confirmation was obtained from organic synthesis of the imidazolium by-product. When TMMPI was subjected to analysis by gas chromatography-mass spectrometry (GC-MS), isomerization and degradation into two distinct compounds were observed, which pointed towards thermal instability under GC conditions. A liquid chromatography-mass spectrometry (LC-MS) based investigation into a micro-scale synthesis of mephedrone and three additional analogues revealed that the corresponding TMMPI analogue was formed. Interestingly, storage of mephedrone freebase in a number of organic solvents also gave rise to TMMPI and it appeared that its formation during storage was significantly reduced in the absence of air. The present study aimed to support clandestine forensic investigations by employing analytical strategies that are applicable to manufacturing sites. The imidazolium salts will most likely be found amongst the waste products of any clandestine lab site under investigation rather than with the desired product

    Photon number resolution using a time-multiplexed single-photon detector

    Full text link
    Photon number resolving detectors are needed for a variety of applications including linear-optics quantum computing. Here we describe the use of time-multiplexing techniques that allows ordinary single photon detectors, such as silicon avalanche photodiodes, to be used as photon number-resolving detectors. The ability of such a detector to correctly measure the number of photons for an incident number state is analyzed. The predicted results for an incident coherent state are found to be in good agreement with the results of a proof-of-principle experimental demonstration.Comment: REVTeX4, 6 pages, 8 eps figures, v2: minor changes, v3: changes in response to referee report, appendix added, 1 reference adde

    Generation of Entangled N-Photon States in a Two-Mode Jaynes-Cummings Model

    Full text link
    We describe a mathematical solution for the generation of entangled N-photon states in two field modes. A simple and compact solution is presented for a two-mode Jaynes-Cummings model by combining the two field modes in a way that only one of the two resulting quasi-modes enters in the interaction term. The formalism developed is then applied to calculate various generation probabilities analytically. We show that entanglement, starting from an initial field and an atom in one defined state may be obtained in a single step. We also show that entanglement may be built up in the case of an empty cavity and excited atoms whose final states are detected, as well as in the case when the final states of the initially excited atoms are not detected.Comment: v2: 5 pages, RevTeX4, minor text changes + 1 figure added, revised version to be published in PRA, May 200
    corecore