48,913 research outputs found
Understanding residents’ capacities to support evacuated populations : A study of earthquake and tsunami evacuation for Napier Hill, Napier, Aotearoa New Zealand.
Due to a large regional subduction zone (the Hikurangi subduction zone) and localised faults, Napier City located on the East Coast of Aotearoa/New Zealand is vulnerable to earthquake and tsunami events. On feeling a long or strong earthquake people will need to evacuate immediately inland or to higher ground to avoid being impacted by a tsunami, of which the first waves could start to arrive within 20 minutes (based on the Hikurangi earthquake and tsunami scenario presented in Power et al., 2018). Napier Hill is one such area of higher land, and it is estimated that up to 12,000 people could evacuate there in the 20 minutes following a long or strong earthquake. To understand the capacity of Napier Hill residents to support evacuees, three focus groups were held with a diverse sample of residents from Napier Hill on 21 and 22 July 2019. A follow up email was sent to all participants a week after the focus groups, containing a link to a short six question survey, which was completed by 68 people, most of whom were additional to the focus group attendees. Data from the focus groups and the survey was analysed qualitatively using thematic analysis. The findings highlight that in general people were happy to host evacuees and offer support if they were in a position to do so. However, key issues in being able to offer support included the likely lack of resources available after a disaster, ranging from basic needs though to agency support. The research findings will directly inform Napier City Council and Hawke’s Bay Civil Defence Emergency Management Group’s planning for future readiness and response by providing valuable insights for evacuation planningfalseWellingtonHawke's Bay Civil Defence Emergency Management Grou
Search for magnetic fields in particle-accelerating colliding-wind binaries
Some colliding-wind massive binaries, called particle-accelerating
colliding-wind binaries (PACWB), exhibit synchrotron radio emission, which is
assumed to be generated by a stellar magnetic field. However, no measurement of
magnetic fields in these stars has ever been performed. We aim at quantifying
the possible stellar magnetic fields present in PACWB to provide constraints
for models. We gathered 21 high-resolution spectropolarimetric observations of
9 PACWB available in the ESPaDOnS, Narval and HarpsPol archives. We analysed
these observations with the Least Squares Deconvolution method. We separated
the binary spectral components when possible. No magnetic signature is detected
in any of the 9 PACWB stars and all longitudinal field measurements are
compatible with 0 G. We derived the upper field strength of a possible field
that could have remained hidden in the noise of the data. While the data are
not very constraining for some stars, for several stars we could derive an
upper limit of the polar field strength of the order of 200 G. We can therefore
exclude the presence of strong or moderate stellar magnetic fields in PACWB,
typical of the ones present in magnetic massive stars. Weak magnetic fields
could however be present in these objects. These observational results provide
the first quantitative constraints for future models of PACWB.Comment: Accepted in A&
Smectic Phases with Cubic Symmetry: The Splay Analog of the Blue Phase
We report on a construction for smectic blue phases, which have quasi-long
range smectic translational order as well as long range cubic or hexagonal
order. Our proposed structures fill space with a combination of minimal surface
patches and cylindrical tubes. We find that for the right range of material
parameters, the favorable saddle-splay energy of these structures can stabilize
them against uniform layered structures.Comment: 4 pages, 4 eps figures, RevTe
Convex Hull of Arithmetic Automata
Arithmetic automata recognize infinite words of digits denoting
decompositions of real and integer vectors. These automata are known expressive
and efficient enough to represent the whole set of solutions of complex linear
constraints combining both integral and real variables. In this paper, the
closed convex hull of arithmetic automata is proved rational polyhedral.
Moreover an algorithm computing the linear constraints defining these convex
set is provided. Such an algorithm is useful for effectively extracting
geometrical properties of the whole set of solutions of complex constraints
symbolically represented by arithmetic automata
The long period eccentric orbit of the particle accelerator HD167971 revealed by long baseline interferometry
Using optical long baseline interferometry, we resolved for the first time
the two wide components of HD167971, a candidate hierarchical triple system
known to efficiently accelerate particles. Our multi-epoch VLTI observations
provide direct evidence for a gravitational link between the O8 supergiant and
the close eclipsing O + O binary. The separation varies from 8 to 15 mas over
the three-year baseline of our observations, suggesting that the components
evolve on a wide and very eccentric orbit (most probably e>0.5). These results
provide evidence that the wide orbit revealed by our study is not coplanar with
the orbit of the inner eclipsing binary. From our measurements of the
near-infrared luminosity ratio, we constrain the spectral classification of the
components in the close binary to be O6-O7, and confirm that these stars are
likely main-sequence objects. Our results are discussed in the context of the
bright non-thermal radio emission already reported for this system, and we
provide arguments in favour of a maximum radio emission coincident with
periastron passage. HD167971 turns out to be an efficient O-type particle
accelerator that constitutes a valuable target for future high angular
resolution radio imaging using VLBI facilities.Comment: 8 pages, including 4 figures, accepted by Monthly Notices of the
Royal Astronomical Societ
- …