324 research outputs found

    Controlling shell-side crystal nucleation in a gas-liquid membrane contactor for simultaneous ammonium bicarbonate recovery and biogas upgrading

    Get PDF
    A gas–liquid hollow fibre membrane contactor (HFMC) process has been introduced for carbon dioxide (CO2) separation from biogas where aqueous ammonia (NH3) is used to chemically enhance CO2 absorption and initiate heterogeneous nucleation of the reaction product ammonium bicarbonate at the membrane–solvent interface. Aqueous ammonia absorbents (2–7 M) were initially used in single pass for CO2 separation from a synthetic biogas where nucleation of ammonium bicarbonate crystals was observed at the perimeter of the micropores. Recirculation of the aqueous ammonia absorbent encouraged the growth of ammonium bicarbonate crystals on the shell-side of the membrane that measured several microns in diameter. However, at high aqueous NH3 concentrations (3–7 M), lumen side crystallisation occurred and obstructed gas flow through the lumen of the HFMC. The suggested mechanism for lumen-side crystallisation was absorbent breakthrough into the lumen due to pore wetting which was promoted by low absorbent surface tension at high NH3 concentration. Preferential shell-side nucleation can therefore be promoted by (1) raising surface tension of the absorbent and (2) selection of a membrane with a more regulated pore shape than the PTFE membrane used (d/L 0.065) as both actions can diminish solvent ingress into the pore. This was evidenced using 2 M NH3 absorbent where shell-side crystallisation was evidenced without the onset of lumen side crystallisation. Raising surface tension through the inclusion of salt into the chemical absorbent also promoted greater CO2 flux stability. Importantly, this study demonstrates that chemically enhanced HFMC are an attractive prospect for gas–liquid separation applications where reaction product recovery offers further economic value

    Toward CP-even Neutrino Beam

    Full text link
    The best method of measuring CP violating effect in neutrino oscillation experiments is to construct and use a neutrino beam made of an ideal mixture of νˉe\bar{\nu}_e and νe\nu_e of monochromatic lines. The conceptual design of such a beam is described, together with how to measure the CP-odd quantity. We propose to exploit an accelerated unstable hydrogen-like heavy ion in a storage ring, whose decay has both electron capture and bound beta decay with a comparable fraction.Comment: 6 pages, 2 figures, Published versio

    Neutrino-nucleus interaction rates at a low-energy beta-beam facility

    Full text link
    We compute the neutrino detection rates to be expected at a low-energy beta-beam facility. We consider various nuclei as neutrino detectors and compare the case of a small versus large storage ring.Comment: 6 pages, 3 figure

    PS-XXI, a new synchrotron for the LHC injector

    Get PDF
    The CERN PS is the oldest link in the LHC injector chain. A separate function substitute synchrotron is discussed. It would keep the versatility of the present machine and have a higher extraction energy to relax the tolerance on the microwave instability threshold at injection into the SPS. Its essential property would be an adjustable h variation near the isochronous regime to meet the requirements imposed by bunch compression at ejection. It would also be equipped with all the correction systems of a modern machine

    The FFAG R&D and medical application project RACCAM

    Get PDF
    JACoW web site http://accelconf.web.cern.ch/AccelConf/e06/Pre-Press/WEPCH161.pdf WEPCH161International audienceThe RACCAM project (Recherche en ACCelerateurs et Applications Medicales) has recently obtained fundings, extending over three years (2006-2008), from the French National Research Agency (ANR). RACCAM is a tripartite collaboration, involving (i) the CNRS Laboratory IN2P3/LPSC, (ii) the French magnet industrial SIGMAPHI, and (iii) the nuclear medecine Departement of Grenoble Hospital. The project concerns fixed field alternating gradient accelerator (FFAG) research on the one hand, and on the other hand their application as hadrontherapy and biology research machines. RACCAM's goal is three-fold, (i) participate to the on-going international collaborations in the field of FFAGs and recent concepts of "non-scaling" FFAGs, with frames for instance, the Neutrino Factory (NuFact) and the EMMA project of an electron model of a muon FFAG accelerator, (ii) design, build and experiment a prototype of an FFAG magnet proper to fulfil the requirements of rapid cycling acceleration, (iii) develop the concepts, and show the feasibility, of the application of such FFAG beams to hadrontherapy and to biology research

    Tectonic evolution of the Colorado Basin, offshore Argentina, inferred from seismo-stratigraphy and depositional rates analysis

    No full text
    International audienceBased on a dense 2D seismic reflection dataset and information from 8 exploration wells, we reinterpreted the stratigraphic evolution of the Colorado Basin. The basin is located on the continental shelf and slope within 50 to 2250 m of bathymetry. The total sediment fill can be up to 16,000 m. Seismic-to-well log correlations provide a chrono-stratigraphic framework for the interpreted seismic sequences. We show that the Colorado Basin records the development of a Permian pre-rift period, a Triassic/Jurassic to Early Cretaceous rift phase and a Lower Cretaceous to Tertiary drift phase. This passive margin represents the evolution of lithospheric extension from active rifting to the thermal subsidence/drift stage. Several Cretaceous to Cenozoic slumping episodes were identified and related to progradation of the sequences and sediment build-up in the slope, as well as to the development of seaward dipping extensional faults

    Fake CPT Violation in Disappearance Neutrino Oscillations

    Get PDF
    We make an analysis of the fake CPT-violating asymmetries between the survival probabilities of neutrinos and antineutrinos, induced by the terrestrial matter effects, in three different scenarios of long-baseline neutrino oscillation experiments with L=730 km, L=2100 km and L=3200 km. In particular, the dependence of those asymmetries on the Dirac-type CP-violating phase of the lepton flavor mixing matrix is examined.Comment: RevTex 8 pages (including 3 PS figures). To be publishe

    θ13\theta_{13}, δ\delta and the neutrino mass hierarchy at a γ=350\gamma=350 double baseline Li/B β\beta-Beam

    Full text link
    We consider a β\beta-Beam facility where 8^8Li and 8^8B ions are accelerated at γ=350\gamma = 350, accumulated in a 10 Km storage ring and let decay, so as to produce intense νˉe\bar \nu_e and νe\nu_e beams. These beams illuminate two iron detectors located at L2000L \simeq 2000 Km and L7000L \simeq 7000 Km, respectively. The physics potential of this setup is analysed in full detail as a function of the flux. We find that, for the highest flux (10×101810 \times 10^{18} ion decays per year per baseline), the sensitivity to θ13\theta_{13} reaches sin22θ132×104\sin^2 2 \theta_{13} \geq 2 \times10^{-4}; the sign of the atmospheric mass difference can be identified, regardless of the true hierarchy, for sin22θ134×104\sin^2 2 \theta_{13} \geq 4\times10^{-4}; and, CP-violation can be discovered in 70% of the δ\delta-parameter space for sin22θ13103\sin^2 2 \theta_{13} \geq 10^{-3}, having some sensitivity to CP-violation down to sin22θ13104\sin^2 2 \theta_{13} \geq 10^{-4} for δ90|\delta| \sim 90^\circ.Comment: 35 pages, 20 figures. Minor changes, matches the published versio

    Optimal β\beta-beam at the CERN-SPS

    Full text link
    A β\beta-beam with maximum γ=150\gamma=150 (for \helio ions) or γ=250\gamma=250 (for \neon) could be achieved at the CERN-SPS. We study the sensitivity to θ13\theta_{13} and δ\delta of such a beam as function of γ\gamma, optimizing with the baseline constrained to CERN-Frejus (130 km), and also with simultaneous variation of the baseline. These results are compared to the {\it standard} scenario previously considered, with lower γ=60/100\gamma=60/100, and also with a higher γ350\gamma\sim 350 option that requires a more powerful accelerator. Although higher γ\gamma is better, loss of sensitivity to θ13\theta _{13} and δ\delta is most pronounced for γ\gamma below 100.Comment: 22 page
    corecore