235 research outputs found

    Metadata for describing learning scenarios under European Higher Education Area paradigm

    Get PDF
    In this paper we identify the requirements for creating formal descriptions of learning scenarios designed under the European Higher Education Area paradigm, using competences and learning activities as the basic pieces of the learning process, instead of contents and learning resources, pursuing personalization. Classical arrangements of content based courses are no longer enough to describe all the richness of this new learning process, where user profiles, competences and complex hierarchical itineraries need to be properly combined. We study the intersection with the current IMS Learning Design specification and the additional metadata required for describing such learning scenarios. This new approach involves the use of case based learning and collaborative learning in order to acquire and develop competences, following adaptive learning paths in two structured levels

    Short-Range B-site Ordering in Inverse Spinel Ferrite NiFe2O4

    Full text link
    The Raman spectra of single crystals of NiFe2O4 were studied in various scattering configurations in close comparison with the corresponding spectra of Ni0.7Zn0.3Fe2O4 and Fe3O4. The number of experimentally observed Raman modes exceeds significantly that expected for a normal spinel structure and the polarization properties of most of the Raman lines provide evidence for a microscopic symmetry lower than that given by the Fd-3m space group. We argue that the experimental results can be explained by considering the short range 1:1 ordering of Ni2+ and Fe3+ at the B-sites of inverse spinel structure, most probably of tetragonal P4_122/P4_322 symmetry.Comment: 10 pages, 5 figures, 6 table

    First-principles study of stability and vibrational properties of tetragonal PbTiO_3

    Full text link
    A first-principles study of the vibrational modes of PbTiO_3 in the ferroelectric tetragonal phase has been performed at all the main symmetry points of the Brillouin zone (BZ). The calculations use the local-density approximation and ultrasoft pseudopotentials with a plane-wave basis, and reproduce well the available experimental information on the modes at the Gamma point, including the LO-TO splittings. The work was motivated in part by a previously reported transition to an orthorhombic phase at low temperatures [(J. Kobayashi, Y. Uesu, and Y. Sakemi, Phys. Rev. B {\bf 28}, 3866 (1983)]. We show that a linear coupling of orthorhombic strain to one of the modes at Gamma plays a role in the discussion of the possibility of this phase transition. However, no mechanical instabilities (soft modes) are found, either at Gamma or at any of the other high-symmetry points of the BZ.Comment: 8 pages, two-column style with 3 postscript figures embedded. Uses REVTEX and epsf macros. Also available at http://www.physics.rutgers.edu/~dhv/preprints/index.html#ag_pbt

    The design space of a configurable autocompletion component

    Get PDF
    Autocompletion is a commonly used interface feature in diverse applications. Semantic Web data has, on the one hand, the potential to provide new functionality by exploiting the semantics in the data used for generating autocompletion suggestions. Semantic Web applications, on the other hand, typically pose extra requirements on the semantic properties of the suggestions given. When the number of syntactic matches becomes too large, some means of selecting a semantically meaningful subset of suggestions to be presented to the user is needed. In this paper we identify a number of key design dimensions of autocompletion interface components. Our hypothesis is that a one-size-fits-all solution to autocompletion interface components does not exist, because different tasks and different data sets require interfaces corresponding to different points in our design space. We present a fully configurable architecture, which can be used to configure autocompletion components to the desired point in this design space. The architecture has been implemented as an open source software component that can be plugged into a variety of applications. We report on the results of a user evaluation that confirms this hypothesis, and describe the need to evaluate semantic autocompletion in a task and application-specific context

    The design space of a configurable autocompletion component

    Get PDF
    Autocompletion is a commonly used interface feature in diverse applications. Semantic Web data has, on the one hand, the potential to provide new functionality by exploiting the semantics in the data used for generating autocompletion suggestions. Semantic Web applications, on the other hand, typically pose extra requirements on the semantic properties of the suggestions given. When the number of syntactic matches becomes too large, some means of selecting a semantically meaningful subset of suggestions to be presented to the user is needed. In this paper we identify a number of key design dimensions of autocompletion interface components. Our hypothesis is that a one-size-fits-all solution to autocompletion interface components does not exist, because different tasks and different data sets require interfaces corresponding to different points in our design space. We present a fully configurable architecture, which can be used to configure autocompletion components to the desired point in this design space. The architecture has been implemented as an open source software component that can be plugged into a variety of applications. We report on the results of a user evaluation that confirms this hypothesis, and describe the need to evaluate semantic autocompletion in a task and application-specific context

    Crowd vs Experts: Nichesourcing for Knowledge Intensive Tasks in Cultural Heritage

    Get PDF
    The results of our exploratory study provide new insights to crowdsourcing knowledge intensive tasks. We designed and performed an annotation task on a print collection of the Rijksmuseum Amsterdam, involving experts and crowd workers in the domain-specific description of depicted flowers. We created a testbed to collect annotations from flower experts and crowd workers and analyzed these in regard to user agreement. The findings show promising results, demonstrating how, for given categories, nichesourcing can provide useful annotations by connecting crowdsourcing to domain expertise

    Computational Controversy

    Full text link
    Climate change, vaccination, abortion, Trump: Many topics are surrounded by fierce controversies. The nature of such heated debates and their elements have been studied extensively in the social science literature. More recently, various computational approaches to controversy analysis have appeared, using new data sources such as Wikipedia, which help us now better understand these phenomena. However, compared to what social sciences have discovered about such debates, the existing computational approaches mostly focus on just a few of the many important aspects around the concept of controversies. In order to link the two strands, we provide and evaluate here a controversy model that is both, rooted in the findings of the social science literature and at the same time strongly linked to computational methods. We show how this model can lead to computational controversy analytics that have full coverage over all the crucial aspects that make up a controversy.Comment: In Proceedings of the 9th International Conference on Social Informatics (SocInfo) 201
    • …
    corecore