
C e n t r u m v o o r W i s k u n d e e n I n f o r m a t i c a

 INformation Systems

The design space of a configurable autocompletion
component

M. Hildebrand, J.R. van Ossenbruggen, A.K. Amin,
L.M. Aroyo, J. Wielemaker, L. Hardman

REPORT INS-E0708 NOVEMBER 2007

Information Systems

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301646068?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Centrum voor Wiskunde en Informatica (CWI) is the national research institute for Mathematics and
Computer Science. It is sponsored by the Netherlands Organisation for Scientific Research (NWO).
CWI is a founding member of ERCIM, the European Research Consortium for Informatics and Mathematics.

CWI's research has a theme-oriented structure and is grouped into four clusters. Listed below are the names
of the clusters and in parentheses their acronyms.

Probability, Networks and Algorithms (PNA)

Software Engineering (SEN)

Modelling, Analysis and Simulation (MAS)

Information Systems (INS)

Copyright © 2007, Stichting Centrum voor Wiskunde en Informatica
P.O. Box 94079, 1090 GB Amsterdam (NL)
Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333
Telefax +31 20 592 4199

ISSN 1386-3681

The design space of a configurable autocompletion
component

ABSTRACT
Autocompletion is a commonly used interface feature in diverse applications. Semantic Web
data has, on the one hand, the potential to provide new functionality by exploiting the semantics
in the data used for generating autocompletion suggestions. Semantic Web applications, on the
other hand, typically pose extra requirements on the semantic properties of the suggestions
given. When the number of syntactic matches becomes too large, some means of selecting a
semantically meaningful subset of suggestions to be presented to the user is needed. In this
paper we identify a number of key design dimensions of autocompletion interface components.
Our hypothesis is that a one-size-fits-all solution to autocompletion interface components does
not exist, because different tasks and different data sets require interfaces corresponding to
different points in our design space. We present a fully configurable architecture, which can be
used to configure autocompletion components to the desired point in this design space. The
architecture has been implemented as an open source software component that can be plugged
into a variety of applications. We report on the results of a user evaluation that confirms this
hypothesis, and describe the need to evaluate semantic autocompletion in a task and
application-specific context.

2000 Mathematics Subject Classification: -
1998 ACM Computing Classification System: H.5.2; H.3.3
Keywords and Phrases: Semantic autocompletion, configurable interface component, sorting, clustering, presentation,
RDF
Note: This research was supported by the MultimediaN project funded through the Bsik programme of the Dutch
Government and by the European Commission under contract FP6-027026, Knowledge Space of semantic inference for
automatic annotation and retrieval of multimedia content K-Space.

The Design Space of a
Configurable Autocompletion Component

Michiel Hildebrand Jacco van Ossenbruggen Alia Amin
CWI

P.O. Box 94079
1090 GB Amsterdam, The Netherlands

email: Firstname.Lastname@cwi.nl

ABSTRACT
Autocompletion is a commonly used interface feature in di-
verse applications. Semantic Web data has, on the one hand,
the potential to provide new functionality by exploiting the
semantics in the data used for generating autocompletion
suggestions. Semantic Web applications, on the other hand,
typically pose extra requirements on the semantic proper-
ties of the suggestions given. When the number of syntactic
matches becomes too large, some means of selecting a se-
mantically meaningful subset of suggestions to be presented
to the user is needed. In this paper we identify a number
of key design dimensions of autocompletion interface com-
ponents. Our hypothesis is that a one-size-fits-all solution
to autocompletion interface components does not exist, be-
cause different tasks and different data sets require inter-
faces corresponding to different points in our design space.
We present a fully configurable architecture, which can be
used to configure autocompletion components to the desired
point in this design space. The architecture has been im-
plemented as an open source software component that can
be plugged into a variety of applications. We report on the
results of a user evaluation that confirms this hypothesis,
and describe the need to evaluate semantic autocompletion
in a task and application-specific context.

Categories and Subject Descriptors
H.5.2 [Information Systems]: User Interfaces—Graphi-
cal user interfaces; Interaction styles; H.3.3 [Information
Systems]: Information Search and Retrieval

Keywords
Semantic autocompletion, configurable interface component,
sorting, clustering, presentation, RDF

1. INTRODUCTION
Autocompletion is an interface feature that allows users to

type only a few characters instead of a full word or phrase.
After the user has entered the first characters, the system
responds by completing the word or phrase (either automat-
ically or on explicit request of the user, e.g. after the user
hits the “Tab” key). If the characters typed in so far can be
completed in more than one way, most interfaces present a
list of multiple options. The user can than either select one

Copyright is held by the author/owner(s).
WWW2008, April 21–25, 2008, Beijing, China.
.

of the options from the list, or continue typing to narrow
down the number of options.

In this paper, we argue that while autocompletion may
seem to be, at first sight, a straightforward and simple us-
ability feature directed at reducing keystrokes, a closer look
will reveal that it is a complex feature that comes in many
design configurations. The configuration depends on the
designer’s purpose, the user’s task, and the application con-
text. Historically, autocompletion has been primarily used
in a local, standalone application context, in which the data
source from which the suggestions are generated is often
an integral part of the application. Recent advances in
Web technology make it possible to also employ autocom-
pletion in Web-based applications, storing the data source
on a remote Web server instead of the end user’s local de-
vice. Semantic Web applications build upon this. On the
one hand, they introduce new autocompletion possibilities
by exploiting knowledge explicit in their typed and linked
data sources. On the other hand, they often need disam-
biguated, uniquely identified concepts as input, putting also
new requirements on autocompletion interfaces.

The structure of this paper is as follows. In the following
section, we discuss work related to autocompletion interfaces
for a systematic analysis of the variety of purposes, tasks,
data sources and application contexts in which autocom-
pletion has been applied. We focus on a typical Semantic
Web application context where suggestions are generated
from relatively large RDF or OWL encoded data sets, and
where disambiguation of syntactically similar suggestions is
a key issue. Based on our analysis, we define the design
space with the key design dimensions along which different
autocompletion components can be positioned. We then
present a software architecture which can be configured by
application developers to the desired point in this space.
We discuss the configurable autocompletion component im-
plemented on the basis of this architecture and discuss the
performance implications of some of the design decisions.
We conclude by an analysis of the task-oriented user evalu-
ations needed to test our interface in context, and provide
preliminary results on the user testing we have done so far.

2. RELATED WORK
Autocompletion interfaces are not, in themselves, new.

An early example is the file and command name completion
that has been part of most UNIX shells [8] for decades. Here
the data source is typically the set of filenames in the user’s
current working directory (filename completion) or the set of
command names in the user’s PATH (command name comple-

tion). Benefits to the user include time reduction (through
reducing the number of keystrokes), reduction of spelling
errors, and providing a reminder of possible options when
the complete name of a file or command has been forgotten.
If the characters the user has typed so far are insufficient
to uniquely identify a file or command, shells typically list
an alphabetically sorted list of results, listing all potential
matches. This combination of known ordering and present-
ing the complete list of options makes the suggestion list
very predictable.

A more recent example is the autocompletion of email ad-
dresses in an email client. Here, the data source is typically
the user’s address book. User benefits are similar to those for
filename completion, namely time reduction and a memory
aid for forgotten addresses. A key difference with the file-
name completion example is that result lists may no longer
be sorted alphabetically. The Thunderbird email client1,
for example, orders matching email addresses based on fre-
quency of use. This has as advantage that, in most cases,
it will take the user less time to select the right address. A
disadvantage, however, is that when usage patterns change
over time, so will the order of the suggestions, thus reduc-
ing predictability. The suggestions themselves are still pre-
dictable because all matches from the user’s address book
are presented.

In the environment of web browsers, autocompletion is
used to select a web page from the set of previously vis-
ited web pages. The data source is the list of visited URI’s
stored locally by the web browser. In the web browser, how-
ever, where the number of browsed web pages increases more
rapidly than an email address list, a list representing all
matching URIs from the user’s history will in time become
a unmanageably long list. The designer of the application
thus needs to introduce a means of reducing the suggestions
offered. For example, by matching only on URIs from the
current session, or from URIs visited in the last N days. If
the user is not aware of this selection, URIs may disappear
from the list of results in an inexplicable way.

Selecting a meaningful subset of a large set of potential
suggestions, is however, a recurring problem for all autocom-
pletion interfaces working on larger data sources. In cases
where a ranking that is appropriate for the user’s task can
be applied, top N approaches may be deployed to reduce
the number of suggestions. When an appropriate partition-
ing of the suggestions can be found, suggestions may be
grouped with a maximum number of suggestions per group.
For example, Apple.com provides a search box with auto-
completion on its homepage, where suggestions are grouped
into categories reflecting the top level navigation structure
of the website, and only a few results are shown for each
group.

Google Suggest2 generates suggestions for queries to the
search engine. The data source is the log of queries sub-
mitted by users world-wide, stored on the Google server.
Again, a benefit is to help the user input their intended
query, but the interface provides more than only this. If
the user were to input a query of a single term, the search
engine result may be (too) many hits. The autocompletion
interface gives suggestions of other commonly paired words
with the user’s term, providing a statistically likely effec-

1http://www.mozilla.com/thunderbird/
2http://labs.google.com/suggestfaq.html

tive multi-term query. Google Suggest is thus more than a
usability feature because, in addition to making the query
formulation easier, it suggests additional queries to the one
the user had in mind. The advantage is that good query sug-
gestions will result in better search results for the user. On
the down side, the means of selecting the displayed sugges-
tions and the reasoning behind the ordering is often neither
clear nor predictable to the user.

Google Suggest uses statistical methods to determine multi-
term queries most likely to be useful to the user. In the case
of semantic web data, where explicit relations have been
specified in the underlying data sources, these can be used
to provide extra services. This “semantic” autocompletion
[3, 4, 6, 7, 11] can be used for a wide variety of functions,
see [6] for a good overview. In the scope of this article, we
focus on using semantics to provide means for term disam-
biguation, extra suggestions and filtering of results.

Term disambiguation is a useful feature for all applica-
tions that wish to support simple keyword input from the
user but need to map these keywords to the right URI of the
corresponding resource. Typical examples include keyword
search [4, 5] and annotation [10] in RDF-based applications.
Once the URIs are found their in- and out-going links pro-
vide a means to extend the syntactic matching suggestions
with semantically related suggestions [6].

Semantic filtering is a means to reduce the number of re-
sults to a subset that is meaningful in the current application
context. Note that while we focus on RDF-based filtering
in this paper, the concept is not limited to the RDF world.
Freebase.com, for example, auto-completes form fields using
data entered by other users. It exploits the type of the data
to select only matches of the correct type (e.g. if it knows a
certain form field requires a location, it suggests only names
of cities and other locations). CompleteSearch, a search
engine for text documents with several autocompletion fea-
tures [2], combines indexing techniques highly optimized for
prefix search with query refinement and other features based
on typed data.

In summary, we can state that autocompletion is used on
various data sources (e.g. strings, terms, typed data, the-
sauri and ontologies), within different tasks (e.g. information
input, document search, term search and annotation), and
for different purposes (time saving, memory aid, extra sug-
gestions and term disambiguation). As a consequence, the
developer of an application who wishes to use autocomple-
tion needs to understand the associated design dimensions.

3. DESIGN SPACE
The goal of an autocompletion interface is to display a set

of suggestions to the end-user that most likely contains the
term she is looking for. When the set of potential matches
is too large to be displayed in its entirety to the end user,
the system needs to make a selection sufficiently small to be
meaningfully conveyed to the user. A well configured sys-
tem will maximize the chance that this selection contains
the suggestion that the user needs. The previous section,
however, shows that autocompletion has been used to ob-
tain different benefits and to support different tasks in dif-
ferent application contexts. Autocompletion interfaces used
within different applications will thus require different con-
figurations.

In this section, we provide a systematic overview of the
key design dimensions of autocompletion in a (semantic)

Figure 1: Example: Screenshots of an autocom-
pletion interface for geographic locations. (a) sug-
gestions grouped by country and (b) suggestions
grouped by place type. Underlying data source is
Getty’s Thesaurus of Geographic Names (TGN),
used with permission.

web application context. These include identifying the high
level goals of the application, such as the user task; identify-
ing appropriate selection methods; making decisions on how
to organize the selected subset; and determining an appro-
priate interface. Using concrete examples, we illustrate how
the desired benefits, user task and application context result
in different design decisions along these dimensions. Note
that the examples are just that: examples to illustrate the
design space. To confirm that these design decisions yield
the desired interface in a particular context, the configured
interface needs to be evaluated in that specific context.

3.1 Application context and data source
Application designers first need to decide on how an au-

tocompletion component is integrated into the overall appli-
cation. A key decision is to determine the exact format of a
selected suggestion that is returned to the application. This
might be a simple or compound string or a URI referring to a
resource (in the case of Semantic Web applications). All the
screenshots in the figures of this article have been taken from
the RDF-based application discussed in section 53, so under
the hood all these components return the URI associated
with the selected suggestion to the application. Other ap-
plications might choose to use the same data source and the
same autocompletion component, but request a string-based
result. Given that the user selected the German capital in
the examples above, a tagging application might prefer to be
passed just the string “Berlin”, while another might prefer
the less ambiguous “Berlin, city, Deutschland”.

Another key design decision is the identification of the
underlying data source from which to generate the sugges-
tions. For each data source, one might decide to use only
a (context-specific) selection of the complete source. For
example, the screenshots in Figure 1 show suggestions for

3All examples can be tried at
http://slashfacet.semanticweb.org/autocomplete/.

the input prefix “Berlin”. These are based on a specific
geographic thesaurus as the data source. In this example,
the user is interested in inhabited places, so suggestions are
based on an appropriate subset of the data source (i.e. names
of rivers, mountains, parks, etc. are excluded). In short, the
data source needs to match the user’s task in the applica-
tion, and the application needs to be able to process the
suggestions derived from this source.

3.2 Selecting suggestions
Given the context of the application and the user task,

the designer needs to decide upon the method of selecting
suggestions. These may be based on, for example, string
matching or semantic proximity in an RDF graph. Differ-
ent string matching techniques may result in different sug-
gestions being offered for the same input. One might, for
example, match on strict prefixes of the item’s name (e.g.
“Bernau bei Berlin” matches on “bern” but not “berl”), on
the prefixes of the individual words (as in Figure 1a), or on
any arbitrary sub-string.

Many data sources have multiple strings per item that can
be matched upon. In the email address example, matching is
typically done on the email address, but also on the full and
nickname fields in the address book. Thesauri often feature
preferred and alternative names for each concept, possibly in
multiple languages. In the examples of Figure 1, the Italian
input “Berlino” would also have triggered suggestions for the
German capital if the matching was applied to the foreign
name fields in the data source. An application designer thus
needs to select the appropriate fields to match on.

In many cases, syntactic selection by string matching alone
results in too many potential suggestions, and it becomes
imperative to reduce the results to a more meaningful subset.
Application designers should thus look for ways to combine
knowledge about the application context with the seman-
tics of the underlying data source to make an appropriate
selection. On the other hand, for some applications it may
be beneficial to extend the set of suggestions by exploiting
semantic relationships in the data, for example to suggest
narrower terms from a thesaurus as a means of query refine-
ment.

3.3 Organizing suggestions
Have selected a set of potential suggestion items, these

than need to be organized in some way for presentation to
the user. Common methods used are an alphabetical order-
ing or ranking on most frequent use. In some cases, however,
a subset of suggestions might be more closely related, and
could usefully be displayed as a single group. In Figure 1a,
for example, suggestions have been grouped by country, with
the intention of enabling users to more quickly locate their
target. For example, if they know they are not looking for a
place in the USA, they might skip the entire group of over
50 (!) places called Berlin in the USA. Grouping might also
provide an opportunity in the interface to limit the max-
imum number of items shown in each group. In Figure 1,
this maximum is set to five, and an “view all” button is pro-
vided for groups with more results. Which grouping works
best (if it works at all) is typically not obvious. Figure 1b
shows autocompletion suggestions similar to those of Figure
1a, only here the grouping is based on the place type, and
not the country. In summary, grouping suggestions may be
helpful to users in cases where there are useful categories

Figure 2: Example similar to that in Figure 1, but
here all places with the same name have been col-
lapsed into a single, expandable, suggestion.

Figure 3: Example of semantic autocompletion sug-
gestions for “bottle”. Here the interaction style is
similar to that in 2, but here the secondary window
is used to suggest more specific (hyponym) terms.
The underlying data source is Princeton’s WordNet.

into which the suggestions can be classified.
For lists with more than a few items, some ordering is

needed to help users quickly find their target without being
forced to scan the entire list. Alphabetical ordering of the
suggestions often provides a solution to this problem that is
both simple to implement and results in a familiar ordering
for the user. Other ways to order the results may improve on
this when the application can make informed guesses as to
which of the matching suggestions are most likely to be the
ones intended by the user. In the email case, frequency of use
might provide a good indication for this, to the extent that
it might perform better than alphabetical ordering. If the
purpose of autocompletion is to give extra suggestions, as in
Google Suggest, ordering is essential, as users will typically
consider only a few suggestions.

For the example, in Figure 1b, the German capital of
Berlin appears below the lesser known villages in the US
with the same name, as the list is sorted alphabetically. If
this is not appropriate for the application, simply ordering
on population size might already give the desired result. In

Figure 4: Example layout for autocompletion on
locations (Getty’s TGN) and nouns (Princeton’s
WordNet). Sufficient information needs to be dis-
played to help users in disambiguating suggestions
with the same name.

general, however, the ordering scheme being applied is dif-
ficult to explain to end users. In cases where their target
does not show up in, say, the top five suggestions, a long list
of ordered results may appear as a random list to users who
do not understand the ordering used.

3.4 Interface and interaction
Having chosen an appropriate organization for the sugges-

tions, these need to be displayed to the user in some manner.
Determining which items to display for each suggestion is
another key design decision, since in every autocompletion
interface screen real estate is a scarce resource. A sufficiently
large number of suggestions needs to be displayed to the user
to select from, with sufficient information to disambiguate
similar suggestions from one another. Application designers
need to strike a balance between the number of suggestions
and the amount of explanatory information per suggestion.

Closely related to selecting the display information is the
style and layout of each individual label. In general, one
needs to strive for a design that aids the user in selecting
the most appropriate suggestion. The design may also solve
part of the screen real estate problem discussed above.

Figure 4 indicates the components of the layouts used in
the other figures. The currently matching terms are listed,
where the part of the term that matches the input so far
is shown in blue4 (“match label” in the figure). Many data
sources use the notion of preferred and alternative labels.
For the TGN example, left, the preferred label is shown
in brackets when the match is on an alternative label. In
the WordNet case, right, the same layout is used to show
a synonym of the term selected to assist the user in disam-
biguating identical words with different meanings (“addi-
tional label” in the figure). Subscripts and additional labels
can be added where necessary. Longer textual descriptions
(if present) are deferred to a secondary pop-up to save space,
and only shown when the user hovers over a suggestion.

Since improving the user interface is typically a key design
goal, selecting an appropriate interaction style is paramount.
Typical minimum requirements include the option for users
to select suggestions from the list using both the keyboard
and the mouse. When the number of suggestions is too

4Highlighting the matching part of the suggestion is a simple
technique to help explain to the user why a suggestion is
given.

Figure 5: High level software architecture for a au-
tocompletion Web service.

large be shown in a single list and some means of reducing
the total number shown initially is applied, this has to be
communicated to the user. The user requires extra infor-
mation in the interface to understand that there are extra
suggestions not currently being displayed, and what needs
to be done to see them. For example, the “view all” button
in Figure 1 is used both as an indicator that not all sugges-
tions are currently displayed, and as way of accessing all the
suggestions.

In addition to alternative layouts, alternative interaction
styles can also be used to find different trade-offs when deal-
ing with the screen real estate issue. For example, in Figure
2, all locations with the same name have been grouped into
a single item in the list of suggestions, and this expands into
a secondary list when the mouse cursor hovers over them.
This has the advantage of being able to display more sug-
gestions, with the disadvantage that many places require a
two-step selection process. Similar interaction styles can be
used for semantic data sources. For example, in Figure 3,
the secondary window is used to display more specific sug-
gestions, based on hyponym relations defined in WordNet.

4. SOFTWARE ARCHITECTURE
Based on the design space described in the previous sec-

tion, we describe the various components that comprise our
autocompletion architecture and discuss the configuration
options of each component. We detail the information be-
ing gathered in the autocompletion data structure and spec-
ify the input and output of each component. We assume a
client/server context typical for a Web service and pay ex-
tra attention to Semantic Web-related issues where relevant.
The components and their configuration options detailed in
this section are sufficient to cover the dimensions of our de-
sign space.

Overall configuration — A high level view of the pro-
posed software architecture is sketched in Figure 5. We as-
sume a client side user interface based on a typical Web
browser with (X)HTML, CSS and JavaScript support, and
a Web server offering an HTTP-based interface to the au-

tocompletion service. Since we focus on RDF-encoded data
sources, we also assume the server has full access to a local
or remote triple store.

User interface input component — During user in-
put, the characters typed so far are submitted over HTTP
by the client to the autocompletion service. Users often type
an initial sequence of characters within a small time frame,
paying attention to the autocompletion suggestions only af-
ter typing the last character of the sequence. Ideally, this
should result in only a single autocompletion request after
the last character has been typed, since the autocomple-
tion results associated with the other keystrokes are ignored
by the user and thus only cause unnecessary server load
by sending a rapid succession of requests. A common ap-
proach is to send the autocompletion request only when the
user has stopped typing for a certain, configurable, amount
of time. (Values of around 200 milliseconds typically of-
fer a reasonable trade-off between preventing unnecessary
requests while not introducing too large delays in the sug-
gestion response). Even when users type in characters very
slowly, the client may wait for a minimal number of charac-
ters being entered before the first query is submitted, just
to prevent the server returning huge numbers of probably
irrelevant results for very small prefixes. Again, exact val-
ues depend on the context, but a minimum length of two or
three characters as input is quite typical.

String matching component — After the autocomple-
tion service receives a request, this component performs an
appropriate string matching algorithm, matching the input
passed in the request against (a subset of) the selected data
source. To ensure reasonable interactive response times, the
service needs fast, pre-indexed access to the strings in the
data source. For RDF encoded data sources, the input string
could either be compared with all literals in the repository,
or with only literals associated to specific RDF properties
(e.g. values of rdfs:label or skos:prefLabel).

Depending on the underlying indexing engine deployed,
it may either return the matching strings themselves or the
items to which they belong. In the latter case, the service
needs to find the suggestion items with which the matching
strings are associated. In the RDF case, for example, once
a literal has been identified as containing a match with the
search string, one typically needs to find the URIs of the
subject of the triple in which the match was found and the
predicate that encodes how the subject is related to the
matched literal.

The output of this component is a first set of potential
autocompletion suggestions, along with, for each sugges-
tion, sufficient information to explain how this suggestion
matches the input of the user.

Merging component — Matching is often done on more
than one field in the source data, as explained in Section 3.
As a result, the same suggestion may have been found mul-
tiple times by matches on different strings. This might lead
to undesired duplicates in the interface. To reduce these
into a single suggestion is, however, not just a matter of re-
moving the duplicates. For the resulting merged suggestion,
the application needs to keep track of the different ways it
is matching the user’s input.

The output of this component is a set of unique sugges-
tions, potentially with multiple explanations for the match.

Filter results — Further, application-specific filtering
is often required to remove unwanted results. In Figure 1,

names of rivers, forests etc. have been filtered out. While
this type of filtering could have been done in the string
matching component, it is often more efficient to do all fil-
tering at once. Also note that in practice, multiple data
sources may be stored in the same triple store. In the ex-
amples above, both TGN and WordNet could have been in
the same store, in which case the application might want
to have the matches on WordNet strings filtered out when
auto-completing on locations.

More result-specific filtering scenarios are also possible.
In Figure 3, for example, some of the hyponyms of “bot-
tle” shown in the right window also match on “bottle”, and
these have been filtered out from the results on the right.
Note that a server-side filter that needs to be fully config-
urable from the client may require a surprisingly expressive
filter language. For example, for Semantic Web applications
a common use case is to restrict suggestions from a par-
ticular branch of a larger (SKOS-encoded) taxonomy. This
already exceeds the expressivity of the SPARQL query lan-
guage, and extensions such as PSPARQL [1] are necessary
to express filters by recursive paths.

The output of this component is a set of suggestions that
are relevant for the current application context.

Information augmentation — Given the filtered set of
suggestions, additional information for each suggestion may
be needed for inclusion in the display, and/or for sorting
and grouping (see below). Again, given a sufficiently pow-
erful query language and access rights for the client to the
underlying data store, this component could be performed
by the client. In the example of Fig. 1, full access to TGN
would require the client to have a license to do so, so in this
case the extra information needs to be added on the server
side. Again, this means that the client should be able to
configure the extra information it wants to have added to
the results.

The output of this component is a set of suggestions where
each suggestion contains all the information that is needed
to appropriately group, sort and display the suggestion.

Grouping — Once all extra information that could be
used for grouping results has been added to the suggestions,
the actual grouping algorithm can be executed. Note that
there are various types of, and reasons for, grouping: as a
means to organize the results (as in the grouping of loca-
tions by country or place type), as a means to collapse all
suggestions with the same matching label, and as a means
to group semantically related suggestions. This means again
that it requires an extensive configuration API in order to
be configurable from the client.

The output of this component is an hierarchically struc-
tured set of results.

Sorting and top-N selection — In theory, results may
be sorted on any information collected in the previous com-
ponents. In practice, we have learned that for alphabetically
ordered results, the results should be ordered on the match-
ing text, to prevent results from showing up in positions
that the user does not expect. For example, when autocom-
pleting on the input “Be. . . ”, the application may suggest
the UK village of “Barling” because “Berlinga” is recorded
as the preferred Old-English name for that village in TGN.
However, when sorting is done on the currently preferred
name, this suggestion will be listed under other locations
starting with “Ba. . . ”, while the user will most likely expect
her match to appear under locations starting with “Be. . . ”,

since that is the input she provided.
Apart from alphabetical ordering, other orderings are typ-

ically on some numerical value associated with the sugges-
tions. For example, when usage frequencies have been added
to the suggestions in the augmentation component, these
values could be used for ordering the results. Note that
when suggestions have been grouped in the grouping com-
ponent, this typically means that for each group on each
level of the hierarchy an appropriate ordering scheme needs
to be configured.

The result of this step is an ordered tree of suggestions.
If this step is performed at the server side, the tree needs
to be sent to the Web client, using a common format such
as XML or JSON. Many requests, however, result in large
trees, with too many suggestions to send them all to the
client (from a performance perspective, but also from a prac-
tical perspective: sending thousands of suggestions to the
user interface can hardly be considered useful). This means
that on each level in the tree, an autocompletion service
will typically only send the top N suggestions. Selecting
the top N can only be done after the results have been
sorted, and typically needs to be done before the results are
sent to the client. This is the key reason to situate the en-
tire match/merge/filter/augment/group/sort pipeline at the
server side.

In practice, for requests that result in a large number of
suggestions, one might even be forced to move the top N
selection to an earliest stages in the pipeline, just to keep the
performance at acceptable levels. Note that this typically
requires some filtering and/or ranking in the index to ensure
that the most appropriate suggestions are part of the top N .
This approach reduces, however, the flexibility to configure
the ranking on the client side or to sort on information that
is only available at run time.

User interface output component — After the or-
dered tree of suggestions has been sent to the client, it is
displayed in the interface of the autocompletion component,
typically as a list of selectable items. Note that there are
many ways of conveying a tree structure in the user inter-
face, e.g. as a nested series of pop-up menu’s or as a single
menu with headings for each group. Also note that for sug-
gestions with multiple labels, designing an appropriate lay-
out and style is typically non-trivial (see also the discussion
on the trade-off between displaying many suggestions versus
displaying much information per suggestion in section 3).

Once the user has selected an item, this typically needs to
be reported back to the main application using some call-
back function. When selecting a group header two actions
are possible, selecting the group as an item itself, or sending
the query again with a filter on the selected group. Some
applications might also offer the user a choice to ignore all
suggestions and to type the full input manually. This could
be necessary if the intended input is not present in the un-
derlying data source, or if the target suggestion is not found
for other reasons (e.g. because of limitations of the matching
algorithm or because of spelling errors by the user).

5. IMPLEMENTATION
Our implementation consists of a client and server side

search part, and is released as an integral part of ClioPatria,
the open source framework of the MultimediaN E-Culture

Config. # hits ms # hits ms # hits ms # hits ms # hits ms
Berlin... Berli... Berl... Ber... Be...

Base 117 16 123 16 155 24 2107 279 22055 3277
Grouped 117 14 123 15 155 19 2107 314 22055 3301
Merged 56 9 62 9 92 12 1447 162 11952 1872
Top 500 87 12 92 12 119 19 500 66 500 57

South... Sout... Sou... So...

Base 8605 1191 8613 1143 9308 1361 12780 1490
Grouped 8605 1111 8613 1153 9308 1388 12780 2098
Merged 6258 624 6266 682 6856 840 9507 1244
Top 500 500 57 500 57 500 57 500 57

Table 1: Performance statistics on prefixes of ‘Berlin’, ‘Paris’ and ‘South’ in different configurations. Our
base configuration is a prefix match with a filter on type, three extra labels added in the augmentation and
a 3-level sort. “Grouped” is similar but groups suggestions by country. “Merged” is similar to base but
collapses suggestions with the same name. Top 500 is similar but uses exact matching on individual words in
stead of prefix matching. The number of results is extended to 500 using prefix matching. Underlying data
sources is TGN (6.4 million RDF triples).

Demonstrator and /facet multifaceted browser5.
The client side is an extension on the Yahoo! User Inter-

face library (YUI version 2.3.16). This is an off the shelf
JavaScript library that provides several interface compo-
nents along with DOM, DHTML and AJAX functionality
across all A-grade browsers. The YUI autocompletion wid-
get is configurable through its API. The formatting of the
results is extensible and it provides handlers to all impor-
tant events. Furthermore, it supports navigation and selec-
tion via both the keys and mouse, query delay, and minimal
query input length, type-ahead, animations, caching and a
CSS skinning model.

The server side implementation is built upon SWI-Prolog7,
its Web infrastructure and its Semantic Web Library. It fea-
tures an in-memory RDF triple store and full literal indexing
[12, 13].

5.1 Performance
To get a response that is sufficiently fast to use the sug-

gestions interactively, good performance is crucial. Nielsen
summarizes (in Chapter 5 of [9]) the results of several exper-
imental studies as “0.1 second is about the limit for having
the user feel that the system is reacting instantaneously”.
Table 1 shows overall performance statistics8 for some typi-
cal examples on the TGN data set. The table compares four
different configurations against two inputs, with increasingly
smaller prefixes. Note that for the example Berlin, when
the user types four characters or more, the number of match-
ing suggestions found is at most 328, and all results are
found in less than 50ms.

The statistics for input of only two or three characters
are, however, far less impressive. With the number of sug-
gestions far above 1000, and response times of multiple sec-
onds, it is clear that the “Base”, “Grouped” and “Cluster”
configurations are hardly useful for these smaller inputs. For
these configurations, the client component should wait for
the user to have typed at least four characters before au-

5http://e-culture.multimedian.nl/software.shtml
6http://developer.yahoo.com/yui/
7http://www.swi-prolog.org/
8Tests were run on a 64bit Dual AMD Opteron 2600 MHz
with 1024 KB cache and 8GB RAM, running Fedora 6 Linux
and SWI-Prolog 5.6.45

tocompletion requests are sent to the server. This is an ad
hoc solution, however, as can be seen from the statistics on
the input “South”, where even 5 characters provide subopti-
mal performance. A more general solution is thus to reduce
the number of suggestions. Limiting the suggestions to at
most 500 (see discussion below) gets the response time below
40ms in all cases covered in the table.

Table 2 shows similar statistics, but in this case the data
source has been restricted to only the European part of
TGN. Note that the faster response times can be almost fully
explained by this smaller data source having a far smaller
number of matching suggestions. Finding matches in the
much bigger literal index of the complete TGN and per-
forming queries on a data store with all TGN triples is only
marginally slower, and this small effect is completely over-
shadowed by the effect that larger data sources tend to pro-
duce more matches. We are confident that we can scale up
the indexing and retrieval part of the algorithm to the lim-
its of our current in-core architecture. The real bottleneck,
however, is in handling large numbers of suggestions in a
useful way.

Table 3 shows a breakdown of the overall statistics into
separate steps for the query ‘Berlin’ on the complete TGN
data set, using the configuration that groups on country. For
all steps in the pipeline the increase in processing time is
directly related to the number of hits. So, the sooner in the
pipeline one can reduce the number of hits, the larger the
performance gain. Note that in particular, the last step to
sort the results is relatively expensive. This is because in the
current implementation, the sorting step includes collecting
the labels for the additional resources used for sorting.

The bad news is that to avoid removing the “best” sugges-
tions, one needs to sort and rank before throwing any away.
In this scheme, reducing the number of suggestions will only
improve performance slightly (e.g. fewer results need to be
sent to the client), since most computational intensive steps
have been done before the sorting step.

One potential consequence is that services that only need
a small fragment of the data set should only load and index
that small fragment, because filtering out irrelevant results
later is much more expensive. When this is unrealistic and
the full data source needs to be loaded, one could account
for the most frequently used filters when creating the literal

Config. # hits ms # hits ms # hits ms # hits ms # hits ms
Berlin... Berli... Berl... Ber... Be...

Base 44 3 35 7 35 7 413 63 1255 1490
Top 500 10 2 12 2 24 4 328 40 500 64

South... Sout... Sou... So...

Base 144 272 145 275 267 42 770 130
Top 500 143 16 143 16 180 25 500 53

Table 2: Similar statistics as in Table 1, but here only the 0.4M RDF triples related to TGN Europe have
been indexed and loaded into the triple store.

Component # hits ms # hits ms # hits ms # hits ms # hits ms
Berlin... Berli... Berl... Ber... Be...

Match 93 literals 0.3 99 0.4 135 0.8 1792 12 16961 100
Suggestions 243 URIs 2 255 2 316 2 4312 25 45208 267
Merge 117 unique 2 123 2 155 2 2108 44 22065 513
Filter 117 filtered 0.6 123 0.6 155 0.7 2107 11 22055 122
Augment 117 augmented 4 123 4 155 5 2107 82 22055 906
Group 7 groups 0.4 9 0.4 17 0.6 84 10 143 167
Sorted 117 hits 5 123 5 155 6 2107 121 22055 1213
JSON output 124 (hits+groups) 0.6 132 0.6 172 0.9 2191 6 22198 12
Total 14 15 19 314 3300

Table 3: Breakdown into the separate steps of the overall statistics for ‘Berlin’ in the grouped configuration.

index, so that the number of suggestions is already filtered
out in the first string matching step. In addition, when
there is a clear ranking that is widely applicable, the ranking
could also become part of the index. In this way, one can
implement a top N approach early in the pipeline.

Since our current implementation does not support filter-
ing and ranking in the literal index, the top 500 algorithm
implemented uses an alternative approach to reducing the
number of suggestions early in the pipeline. We first perform
an exact match on each word in literal index. When the re-
sult is below 500, these are augmented to maximal 500 by
a normal prefix match. Note that this reduces the number
of suggestions to a maximum of 500 early in the pipeline.
The drawback is that potentially high ranking results are
removed early one. The exact match, however, ensures that
users who are really looking for a location with a name that
literally consists of only the few characters they typed so
far, will find their targets included (and sorted towards the
top) of the suggestions. For example, by performing a pre-
fix match without sorting on ‘Po...’, the Italian river “Po”
will also be found, but if it is not found within the first 500
results, it will be removed from the list of suggestions. By
performing an exact match on ‘Po’ first, this problem is
avoided.

5.2 Client side configuration
Applications may use the autocompletion service provided

by the MultimediaN E-Culture server (on the data sources
we provide) or setup their own server with other RDF data
sources. Here we only discuss the first method9.

Including an autocompletion component on a web page
is similar to including an YUI Autocomplete widget. First
one needs to include the JavaScript library and CSS from
the E-Culture server. Secondly, XHTML markup serves as
place markers for the input and output elements of the au-

9Detailed instructions are available at
http://slashfacet.semanticweb.org/autocomplete/.

tocompletion component:

<div id="elAutocomplete">
<input id="elInput" type="text" />
<div id="elOutput" />

</div>

Finally, the autocompletion component is initialized and
configured with a few lines of JavaScript:

<script type="text/javascript">
var Autocomplete = new Autocomplete(

"elInput",
["elOutput"],
"http://e-culture.multimedian.nl/api/autocomplete",
{ filter: "type(tgn:Place)",

altlabel: "skos:prefLabel",
sublabel: "tgn:placeType",
extlabel: "placeHierarchy([state])",
cluster: "placeHierarchy([country])",
sort: [exact,label,extlabel]

},
{ // YUI autocomplete config see:

// http://developer.yahoo.com/yui/autocomplete/
}

)
</script>

Note that elInput and elOutput refer to the IDs of the
XHTML input and output container elements used in the
XHTML markup. We needed to extend the YUI autocom-
plete component to support hierarchical sub-menus, which
explains why the second argument is a list of output con-
tainers, and not a single ID as is the case in the original YUI
component. The location of the autocompletion Web service
is given by an URI (http://e-culture.multimedian.nl/api/
autocomplete). The fourth argument contains all the addi-
tional configuration parameters not part of the YUI com-
ponent10. It is used to set the filter, the mapping of RDF

10See http://developer.yahoo.com/yui/autocomplete/
for a full overview of the YUI configuration parameters.

property names to the labels used in the interface, the clus-
tering and sorting strategy. Finally, the fifth argument is an
object with the standard configuration options for the YUI
autocomplete component.

The filter component implemented currently supports three
filters. A type filter to constrain the suggestions to instances
of a particular RDF or OWL class. A descendant filter sup-
ports the typical taxonomy use case where suggestions are
limited to a certain branch of the taxonomy. Parameters
are the URI of the concept that is the top of the branch and
the URI of the transitive property that defines the hierarchy
(e.g. skos:narrower). Finally, a property filter to restrict
suggestions to those which have a property with a particular
value.

The current implementation only supports the fixed lay-
out depicted in Figure 4, consisting of four display labels:
the match label, an additional label, an extension label and
a sub-label. In addition there is a description, itself a com-
plex HTML element, that is shown on hovering over the
item. Direct mappings from RDF properties to the labels in
the interface can be specified by the client, as shown in the
example above (altlabel and sublabel). More complex
mappings are currently only supported by server-side plug-
ins defined in Prolog. For example, adding country or state
labels requires finding the appropriate level in the place hier-
archy. This is hard to specify declaratively in the client-side
configuration, but a small and straightforward piece of code
that can be plugged into the Prolog server framework. The
placeHierachy in the example above is an example of such
an extension.

6. EVALUATION
We have conducted a first evaluation experiment where we

exposed 47 users to autocompletion interfaces for two data
sources, TGN and WordNet (most of the screenshots used in
this paper come from interfaces used in the experiment). For
both interfaces, we picked four strategic points in our design
space, each corresponding to a particular configuration of
the autocompletion component, thus testing in total 2 ×
4 = 8 different interfaces. In all interfaces we used strict
alphabetically ordering on the results, and focused on the
grouping and display strategy.

For TGN, we tested one interface based on an ungrouped,
alphabetically ordered list (1), one grouped on country (2),
one grouped on place type (3) and a dynamic grouping (4).
For the dynamic grouping we first constructed a spanning
tree from the resulting suggestions over the geographical
containment relation. The children of the lowest common
parent of all hits were used for grouping. Each test user was
exposed to these four interfaces in a different sequence.

For WordNet, we also tested one interface based on an
ungrouped, alphabetically ordered list (1), one grouped on
the nine top-level synsets of the hyponym hierarchy (2), one
dynamic grouping similar as used for TGN, but with the
WordNet hyponym relation to construct the spanning tree
(3), and a second dynamic grouping that aimed to construct
a maximum of seven groups with a minimum of seven items
given the same spanning tree (4). Again, the test users
where exposed to these four interfaces in different sequences.

For each configuration, we asked users to rate the inter-
face, based on statements related to the interface’s grouping
strategy, where each statement could be rated on a seven
point Likert scale. Typical statements included:

• “I think the items belonging to each group in this
type of list are similar to each other.”

• “I think the relationship between the items and group
title is clear in this type of list.”

• “I think the number of groups in this type of list is
appropriate.”

• “I think the titles of the groups in this type of list
are clear.”

Four both data sources, we asked users to rank the four in-
terface alternatives in order of preference. Finally, we asked
users what type of information they preferred to have in the
display, in order to help them selecting the right item. The
remainder of this section discusses the preliminary results of
this experiment.

When looking at the preferences for the TGN location sug-
gestions, there was no agreement11 among the participants
on the best grouping strategy (p = .162). Users typically
claimed to understand the various groupings, even those of
the interfaces they liked less. This may suggest a setting
where users can personalize the grouping strategy to there
own preferences, but probably only for those applications
where users find the autocompletion behavior sufficiently
important to take the extra hurdle of configuring the inter-
face to their needs.

The picture for the WordNet interfaces is quite different
though, with a statistically significant preference (p = .016)
for the alphabetical ordered, ungrouped configuration, and
many complaints about the clarity of the grouping. The
experiment thus confirms our hypothesis that different data
sets require different configurations, in this case in terms of
the grouping. It also shows that grouping should probably
not be used at all if the underlying data cannot be organized
in groups that are easily understood by the user (as in the
WordNet case).

When looking at the extra information that was displayed
in the interface (primarily to help disambiguating sugges-
tions with the same name), we asked users to rank the dif-
ferent types of information available. Name, country, place
type and alternative names were ranked highest, with a sig-
nificant ranking12. Information about state, detailed place
type and descriptions where ranked as less useful, but here
the ranking was no longer significant(with p = .935 and
p = .101 resp.)13. For WordNet, the highest ranked infor-
mation was the display of name, followed by synonyms, hy-
pernyms (i.e. broader term) and descriptions. Information
about abstract terms, meronyms (both part of and member
of) was rated as less useful, but again here the ranking was
no longer significant (with p = .57 and p = .105, resp.).
Again, this confirms that autocompletion interfaces need to
be appropriately configured to reflect the differences in the
underlying data sets.

11Test results of all four type of interfaces have been checked
by using the Friedman two-way analysis of variance by ranks
test.

12The Friedman test shows significant differences between all
types of information tested (p < 0.05). We performed post-
hoc tests using the Wilcoxon signed ranks test to further
check the difference between individual types of information.

13Our test users where non-US residents, users from the US
might rank state information higher.

7. CONCLUSIONS AND FUTURE WORK
Autocompletion interfaces are not only used as a time

saver by reducing keystrokes. Other potential benefits in-
clude reducing spelling errors, giving input suggestions and
proving input disambiguation. Depending on which of these
benefits have the priority, and depending on the character-
istics of the user’s task, the underlying data source and
others aspects of the application context, autocompletion
interfaces require different design configurations. We have
sketched the autocompletion design space along with a high
level, configurable software architecture for an autocomple-
tion component. The key design dimensions on which one
needs to be able to configure autocompletion interfaces in-
clude the data source, selection strategy, organization of the
suggestions and the interface and interaction design.

We discussed the role of Semantic Web data in each com-
ponent of the architecture. We explained the implementa-
tion of our open source, configurable autocompletion com-
ponent, and the results of a first user experiment.

The user experiment focused on only a small aspect of the
entire design space, namely grouping and information dis-
play. Additionally, it was conducted to test these aspects in
a very general disambiguation task. Users might or might
not prefer different configurations when exposed to the same
interfaces in more realistic tasks. We are currently conduct-
ing a follow up experiment where different autocompletion
configurations are used for a photo annotation task. Based
on the outcome of the first experiment, the follow up will
focus less on the effect of alternative grouping and informa-
tion display, and more on the effect of different ranking and
interaction alternatives.

In addition, we are looking for ways to disambiguate in-
put by better interpreting complex input. For example, in-
put such as ‘Berlin, Germany’ should not perform a literal
match on the entire string, but use the second term to dis-
ambiguate the first.

Acknowledgments
We like to thank all participants in the experiment for their
cooperation. Raphaël Troncy, Željko Obrenović and Lloyd
Rutledge provided helpful comments. This research was
supported by the MultimediaN project funded through the
BSIK programme of the Dutch Government and by the Eu-
ropean Commission under contract FP6-027026, Knowledge
Space of semantic inference for automatic annotation and
retrieval of multimedia content K-Space.

8. ADDITIONAL AUTHORS
Additional authors: Jan Wielemaker (Human Computer

Studies, University of Amsterdam, The Netherlands), Lora
Aroyo (VU University Amsterdam and Technical Univer-
sity of Eindhoven, The Netherlands) and Lynda Hardman
(CWI, Amsterdam and Technical University of Eindhoven,
The Netherlands)

9. REFERENCES
[1] F. Alkhateeb, J. Baget, and J. Euzenat. RDF with

regular expressions. Research report 6191, INRIA
Rhne-Alpes, Grenoble (FR), 2007.

[2] H. Bast and I. Weber. The CompleteSearch Engine:
Interactive, Efficient, and towards IR&DB Integration.

In CIDR 2007, Third Biennial Conference on
Innovative Data Systems Research, pages 88–95,
Asilomar, CA, USA, 2007.

[3] A. Bernstein and E. Kaufmann. Gino - a guided input
natural language ontology editor. In 5th International
Semantic Web Conference (ISWC 2006), pages
144–157. Springer, November 2006.

[4] M. Hildebrand, J. van Ossenbruggen, and
L. Hardman. /facet: A Browser for Heterogeneous
Semantic Web Repositories. In The Semantic Web -
ISWC 2006, pages 272–285, November 2006.

[5] E. Hyvönen, M. Junnila, S. Kettula, E. Mäkelä,
S. Saarela, M. Salminen, A. Syreeni, A. Valo, and
K. Viljanen. MuseumFinland — Finnish museums on
the semantic web. Journal of Web Semantics,
3(2-3):224–241, October 2005.

[6] E. Hyvönen and E. Mäkelä. Semantic
Autocompletion. In Proceedings of the first Asia
Semantic Web Conference (ASWC 2006), pages
739–751, Beijing, 2006.

[7] m.c. schraefel, D. A. Smith, A. Owens, A. Russell,
C. Harris, and M. L. Wilson. The evolving mSpace
platform: leveraging the Semantic Web on the Trail of
the Memex. In Proceedings of Hypertext 2005, pages
174–183, Salzburg, 2005.

[8] C. Newham. Learning The Bash Shell (Nutshell
Handbooks). O’Reilly & Associates, Inc., Sebastopol,
CA, USA, 2005.

[9] J. Nielsen. Usability Engineering. Morgan Kaufmann,
San Francisco, 1993.

[10] A. Schreiber, B. Dubbeldam, J. Wielemaker, and
B. Wielinga. Ontology-based Photo Annotation. IEEE
Intelligent Systems, 16(3):66–74, May-June 2001.

[11] J. van Ossenbruggen, A. Amin, L. Hardman,
M. Hildebrand, M. van Assem, B. Omelayenko,
G. Schreiber, A. Tordai, V. de Boer, B. Wielinga,
J. Wielemaker, M. de Niet, J. Taekema, M.-F. van
Orsouw, and A. Teesing. Searching and Annotating
Virtual Heritage Collections with Semantic-Web
Techniques. In Museums and the Web 2007, April
11-14, 2007.

[12] J. Wielemaker, M. Hildebrand, and J. van
Ossenbruggen. Prolog as the Fundament for
Applications on the Semantic Web. In Proceedings of
the ICLP’07 Workshop on Applications of Logic
Programming to the Web, Semantic Web and
Semantic Web Services (ALPSWS2007), Porto,
Portugal, 2007.

[13] J. Wielemaker, G. Schreiber, and B. Wielinga.
Prolog-Based Infrastructure for RDF: Scalability and
Performance. In The SemanticWeb - ISWC 2003,
pages 644–658, Sanibel Island, Florida, USA, October
20-23, 2003. Springer-Verlag Heidelberg.

