850 research outputs found

    Entropy involved in fidelity of DNA replication

    Get PDF
    Information has an entropic character which can be analyzed within the Statistical Theory in molecular systems. R. Landauer and C.H. Bennett showed that a logical copy can be carried out in the limit of no dissipation if the computation is performed sufficiently slowly. Structural and recent single-molecule assays have provided dynamic details of polymerase machinery with insight into information processing. We introduce a rigorous characterization of Shannon Information in biomolecular systems and apply it to DNA replication in the limit of no dissipation. Specifically, we devise an equilibrium pathway in DNA replication to determine the entropy generated in copying the information from a DNA template in the absence of friction. Both the initial state, the free nucleotides randomly distributed in certain concentrations, and the final state, a polymerized strand, are mesoscopic equilibrium states for the nucleotide distribution. We use empirical stacking free energies to calculate the probabilities of incorporation of the nucleotides. The copied strand is, to first order of approximation, a state of independent and non-indentically distributed random variables for which the nucleotide that is incorporated by the polymerase at each step is dictated by the template strand, and to second order of approximation, a state of non-uniformly distributed random variables with nearest-neighbor interactions for which the recognition of secondary structure by the polymerase in the resultant double-stranded polymer determines the entropy of the replicated strand. Two incorporation mechanisms arise naturally and their biological meanings are explained. It is known that replication occurs far from equilibrium and therefore the Shannon entropy here derived represents an upper bound for replication to take place. Likewise, this entropy sets a universal lower bound for the copying fidelity in replication.Comment: 25 pages, 5 figure

    Thermodynamic framework for information in nanoscale systems with memory

    Full text link
    This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in Arias-Gonzalez, J. Ricardo. 2017. Thermodynamic Framework for Information in Nanoscale Systems with Memory. The Journal of Chemical Physics 147 (20). AIP Publishing: 205101. doi:10.1063/1.5004793 and may be found at https://doi.org/10.1063/1.5004793."[EN] Information is represented by linear strings of symbols with memory that carry errors as a result of their stochastic nature. Proofreading and edition are assumed to improve certainty although such processes may not be effective. Here, we develop a thermodynamic theory for material chains made up of nanoscopic subunits with symbolic meaning in the presence of memory. This framework is based on the characterization of single sequences of symbols constructed under a protocol and is used to derive the behavior of ensembles of sequences similarly constructed. We then analyze the role of proofreading and edition in the presence of memory finding conditions to make revision an effective process, namely, to decrease the entropy of the chain. Finally, we apply our formalism to DNA replication and RNA transcription finding that Watson and Crick hybridization energies with which nucleotides are branched to the template strand during the copying process are optimal to regulate the fidelity in proofreading. These results are important in applications of information theory to a variety of solid-state physical systems and other biomolecular processes. Published by AIP Publishing.This work was supported by the Spanish Ministry of Economy and Competitiveness (Grant No. MAT2015-71806-R).Arias-Gonzalez, JR. (2017). Thermodynamic framework for information in nanoscale systems with memory. The Journal of Chemical Physics. 147(20):1-10. https://doi.org/10.1063/1.5004793S11014720Bustamante, C., Cheng, W., & Mejia, Y. X. (2011). Revisiting the Central Dogma One Molecule at a Time. Cell, 144(4), 480-497. doi:10.1016/j.cell.2011.01.033Bennett, C. H. (1982). The thermodynamics of computation—a review. International Journal of Theoretical Physics, 21(12), 905-940. doi:10.1007/bf02084158Shannon, C. E. (1948). A Mathematical Theory of Communication. Bell System Technical Journal, 27(3), 379-423. doi:10.1002/j.1538-7305.1948.tb01338.xCover, T. M., & Thomas, J. A. (1991). Elements of Information Theory. Wiley Series in Telecommunications. doi:10.1002/0471200611Bernardi, F., & Ninio, J. (1979). The accuracy of DNA replication. Biochimie, 60(10), 1083-1095. doi:10.1016/s0300-9084(79)80343-0Hopfield, J. J. (1974). Kinetic Proofreading: A New Mechanism for Reducing Errors in Biosynthetic Processes Requiring High Specificity. Proceedings of the National Academy of Sciences, 71(10), 4135-4139. doi:10.1073/pnas.71.10.4135Ninio, J. (1975). Kinetic amplification of enzyme discrimination. Biochimie, 57(5), 587-595. doi:10.1016/s0300-9084(75)80139-8Landauer, R. (1991). Information is Physical. Physics Today, 44(5), 23-29. doi:10.1063/1.881299Arias-Gonzalez, J. R. (2012). Entropy Involved in Fidelity of DNA Replication. PLoS ONE, 7(8), e42272. doi:10.1371/journal.pone.0042272Arias-Gonzalez, J. R. (2017). A DNA-centered explanation of the DNA polymerase translocation mechanism. Scientific Reports, 7(1). doi:10.1038/s41598-017-08038-2Church, G. M., Gao, Y., & Kosuri, S. (2012). Next-Generation Digital Information Storage in DNA. Science, 337(6102), 1628-1628. doi:10.1126/science.1226355Goldman, N., Bertone, P., Chen, S., Dessimoz, C., LeProust, E. M., Sipos, B., & Birney, E. (2013). Towards practical, high-capacity, low-maintenance information storage in synthesized DNA. Nature, 494(7435), 77-80. doi:10.1038/nature11875Breuer, H.-P., Laine, E.-M., Piilo, J., & Vacchini, B. (2016). Colloquium: Non-Markovian dynamics in open quantum systems. Reviews of Modern Physics, 88(2). doi:10.1103/revmodphys.88.021002Arias-Gonzalez, J. R. (2016). Information management in DNA replication modeled by directional, stochastic chains with memory. The Journal of Chemical Physics, 145(18), 185103. doi:10.1063/1.4967335Bustamante, C., Liphardt, J., & Ritort, F. (2005). The Nonequilibrium Thermodynamics of Small Systems. Physics Today, 58(7), 43-48. doi:10.1063/1.2012462SantaLucia, J., & Hicks, D. (2004). The Thermodynamics of DNA Structural Motifs. Annual Review of Biophysics and Biomolecular Structure, 33(1), 415-440. doi:10.1146/annurev.biophys.32.110601.141800Andrieux, D., & Gaspard, P. (2008). Nonequilibrium generation of information in copolymerization processes. Proceedings of the National Academy of Sciences, 105(28), 9516-9521. doi:10.1073/pnas.0802049105Arias-Gonzalez, J. R. (2014). Single-molecule portrait of DNA and RNA double helices. Integr. Biol., 6(10), 904-925. doi:10.1039/c4ib00163jErie, D. A., Yager, T. D., & von Hippel, P. H. (1992). The Single-Nucleotide Addition Cycle in Transcription: a Biophysical and Biochemical Perspective. Annual Review of Biophysics and Biomolecular Structure, 21(1), 379-415. doi:10.1146/annurev.bb.21.060192.002115Brovarets’, O. O., & Hovorun, D. M. (2015). New structural hypostases of the A·T and G·C Watson–Crick DNA base pairs caused by their mutagenic tautomerisation in a wobble manner: a QM/QTAIM prediction. RSC Advances, 5(121), 99594-99605. doi:10.1039/c5ra19971aBrovarets’, O. O., & Hovorun, D. M. (2015). Novel physico-chemical mechanism of the mutagenic tautomerisation of the Watson–Crick-like A·G and C·T DNA base mispairs: a quantum-chemical picture. RSC Advances, 5(81), 66318-66333. doi:10.1039/c5ra11773aIbarra, B., Chemla, Y. R., Plyasunov, S., Smith, S. B., Lázaro, J. M., Salas, M., & Bustamante, C. (2009). Proofreading dynamics of a processive DNA polymerase. The EMBO Journal, 28(18), 2794-2802. doi:10.1038/emboj.2009.219Sydow, J. F., & Cramer, P. (2009). RNA polymerase fidelity and transcriptional proofreading. Current Opinion in Structural Biology, 19(6), 732-739. doi:10.1016/j.sbi.2009.10.009Kunkel, T. A. (2004). DNA Replication Fidelity. Journal of Biological Chemistry, 279(17), 16895-16898. doi:10.1074/jbc.r40000620

    A DNA-centered explanation of the DNA polymerase translocation mechanism

    Get PDF
    [EN] DNA polymerase couples chemical energy to translocation along a DNA template with a specific directionality while it replicates genetic information. According to single-molecule manipulation experiments, the polymerase-DNA complex can work against loads greater than 50 pN. It is not known, on the one hand, how chemical energy is transduced into mechanical motion, accounting for such large forces on sub-nanometer steps, and, on the other hand, how energy consumption in fidelity maintenance integrates in this non-equilibrium cycle. Here, we propose a translocation mechanism that points to the flexibility of the DNA, including its overstretching transition, as the principal responsible for the DNA polymerase ratcheting motion. By using thermodynamic analyses, we then find that an external load hardly affects the fidelity of the copying process and, consequently, that translocation and fidelity maintenance are loosely coupled processes. The proposed translocation mechanism is compatible with single-molecule experiments, structural data and stereochemical details of the DNA- protein complex that is formed during replication, and may be extended to RNA transcription.The author thanks B. Ibarra and F.J. Cao for fruitful discussion and H.Rodriguez-Rodriguez for critical reading of the manuscript. This work was supported the Spanish Ministry of Economy and Competitiveness (grant number MAT2015-71806-R).Arias-Gonzalez, JR. (2017). A DNA-centered explanation of the DNA polymerase translocation mechanism. Scientific Reports. 7:1-8. https://doi.org/10.1038/s41598-017-08038-2S187Bustamante, C., Cheng, C. & Mejia, Y. X. Revisiting the central dogma one molecule at a time. Cell 144, 480–497 (2011).van Oijen, A. M. & Loparo, J. J. Single-molecule studies of the replisome. Annu. Rev. Biophys. 39, 429–448 (2010).Wang, H.-Y., Elston, T., Mogilner, A. & Oster, G. Force generation in RNA polymerase. Biophys. J. 74, 1186–1202 (1998).Julicher, F. & Bruinsma, R. Motion of RNA polymerase along DNA: A stochastic model. Biophys. J. 74, 1169–1185 (1998).Voliotis, M., Cohen, N., Molina-París, C. & Liverpool, T. B. Fluctuations, pauses, and backtracking in DNA transcription. Biophys. J. 94, 334–348 (2008).Arias-Gonzalez, J. R. Entropy involved in fidelity of DNA replication. PLoS One 7, e42272 (2012).Morin, J. A. et al. Active DNA unwinding dynamics during processive DNA replication. Proc. Natl. Acad. Sci. USA 109, 8115–8120 (2012).Manosas, M. et al. Mechanism of strand displacement synthesis by DNA replicative polymerases. Nucleic Acids Res. 40, 6174–6186 (2012).Yasuda, R., Noji, H., Kinosita, K. Jr. & Yoshida, M. f 1-atpase is a highly efficient molecular motor that rotates wit h discrete 120° steps. Cell 93, 1117–1124 (1998).Oster, G. & Wang, H. How protein motors convert chemical energy into mechanical work, 1 edn. (ed. Schliwa, M.) (Wiley-VCH, 2003).Chemla, Y. R. & Smith, D. E. Single-molecule studies of viral dna packaging. Adv. Exp. Med. Biol. 726, 549–584 (2012).Arias-Gonzalez, J. R. Optical tweezers to study viruses. Subcell. Biochem. 68, 273–304 (2013).Visscher, K., Schnitzer, M. J. & Block, S. M. Single kinesin molecules studied with a molecular force clamp. Nature 400, 184–189 (1999).Goel, A., Frank-Kamenetskii, M. D., Ellenberger, T. & Herschbach, D. Tuning DNA “strings”: Modulating the rate of DNA replication with mechanical tension. Proc. Natl. Acad. Sci. USA 98, 8485–8489 (2001).Arias-Gonzalez, J. R. Single-molecule portrait of DNA and RNA double helices. Integr. Biol. 6, 904–925 (2014).Herrero-Galan, E. et al. Mechanical identities of RNA and DNA double helices unveiled at the single-molecule level. J. Am. Chem. Soc. 135, 122–131 (2013).Saenger, W. Principles of nucleic acid structure, 2 edn. (Springer-Verlag, New York, 1984).Calladine, C. R., Drew, H., Luisi, B. & Travers, A. Understanding DNA. The molecule and how it works, 3 edn. (Elsevier, Academic Press, 2004).Hormeno, S. et al. Mechanical properties of high-g·c content DNA with a-type base-stacking. Biophys. J. 100, 1996–2005 (2011).Berman, A. J. et al. Structures of phi29 dna polymerase complexed with substrate: the mechanism of translocation in b-family polymerases. EMBO J. 26, 3494–3505 (2007).Hogg, M., Wallace, S. S. & Doublié, S. Crystallographic snapshots of a replicative dna polymerase encountering an abasic site. EMBO J. 23, 1483–1493 (2004).Franklin, M. C., Wang, J. & Steitz, T. A. Structure of the replicating complex of a pol alpha family dna polymerase. Cell 105, 657–667 (2001).Doublié, S., Tabor, S., Long, A. M., Richardson, C. C. & Ellenberger, T. Crystal structure of a bacteriophage t7 dna replication complex at 2.2 a resolution. Nature 391, 251–258 (1998).Blasco, M. A., Lázaro, J. M., Bernad, A., Blanco, L. & Salas, M. Phi29 dna polymerase active site. J. Biol. Chem. 267, 19427–19434 (1992).Kunkel, T. A. & Bebenek, K. DNA replication fidelity. Annu. Rev. Biochem. 69, 497–529 (2000).Kunkel, T. A. DNA replication fidelity. J. Biol. Chem. 279, 16895–16898 (2004).Santoso, Y. et al. Conformational transitions in DNA polymerase i revealed by single-molecule FRET. Proc. Natl. Acad. Sci. USA 107, 715–720 (2010).Morin, J. A. et al. Mechano-chemical kinetics of dna replication: identification of the translocation step of a replicative dna polymerase. Nucleic Acids Res. 43, 3643–3652 (2015).Hormeno, S., Ibarra, B., Valpuesta, J. M., Carrascosa, J. L. & Arias-Gonzalez, J. R. Mechanical stability of low humidity single dna molecules. Biopolymers 97, 199–208 (2012).Hormeno, S. et al. Condensation prevails over b-a transition in the structure of DNA at low humidity. Biophys. J. 100, 2006–2015 (2011).SantaLucia, J. & Hicks, D. The thermodynamics of DNA structural motifs. Annu. Rev. Biophys. Biomol. Struct. 33, 415–440 (2004).Friedberg, E. C. & Fischhaber, P. L. DNA replication fidelity. eLS 69, 497–529 (2005).Arias-Gonzalez, J. R. Information management in DNA replication modeled by directional, stochastic chains with memory. J. Chem. Phys. 145, 185103 (2016).Petruska, J. et al. Comparison between DNA melting thermodynamics and DNA polymerase fidelity. Proc Natl Acad Sci USA 85, 6252–6256 (1988).Shu, Y.-G., Song, Y.-S., Ou-Yang, Z.-C. & Li, M. A general theory of kinetics and thermodynamics of steady-state copolymerization. J. Phys.: Condens. Matter 27, 235105 (2015).Gaspard, P. Kinetics and thermodynamics of exonuclease-deficient DNA polymerases. Phys. Rev. E 93, 042419 (2016).Gaspard, P. Kinetics and thermodynamics of DNA polymerases with exonuclease proofreading. Phys. Rev. E 93, 042420 (2016).Song, Y.-S., Shu, Y.-G., Zhou, X., Ou-Yang, Z.-C. & Li, M. Proofreading of DNA polymerase: a new kinetic model with higher-order terminal effects. J. Phys.: Condens. Matter 29, 025101 (2017).Erie, D. A., Yager, T. D. & von Hippel, P. H. The single-nucleotide addition cycle in transcription: a biophysical and biochemical perspective. Annu. Rev. Biophys. Biomol. Struct. 21, 379–415 (1992).Odijk, T. Stiff chains and filaments under tension. Macromolecules 28, 7016–7018 (1995).Wang, M. D., Yin, H., Landick, R., Gelles, J. & Block, S. M. Stretching dna with optical tweezers. Biophys. J. 72, 1335–1346 (1997).Saturno, J., Blanco, L., Salas, M. & Esteban, J. A. A novel kinetic analysis to calculate nucleotide affinity of proofreading DNA polymerases. application to phi 29 DNA polymerase fidelity mutants. J. Biol. Chem. 270, 31235–31243 (1995).Esteban, J. A., Salas, M. & Blanco, L. Fidelity of ϕ29 dna polymerase. J. Biol. Chem. 268, 2713–2726 (1993).Korzheva, N. & Mustaev, A. RNA and DNA Polymerases, 1 edn. (ed. Schliwa, M.) (Wiley-VCH, 2003).Ibarra, B. et al. Proofreading dynamics of a processive DNA polymerase. EMBO J. 28, 2794–2802 (2009).Nong, E. X., DeVience, S. J. & Herschbach, D. Minimalist model for force-dependent dna replication. Biophys. J. 102, 810–818 (2012).Echols, H. & Goodman, M. F. Fidelity mechanisms in DNA replication. Annu. Rev. Biochem. 60, 477–511 (1991).Roberts, J. D. & Kunkel, T. A. Fidelity of dna replication. Cold Spring Harbor Laboratory Press 31, 217–247 (1996).Johnson, S. J. & Beese, L. S. Structures of mismatch replication errors observed in a dna polymerase. Cell 116, 803–816 (2004).Cover, T. M. & Thomas, J. A. Elements of Information Theory (John Wiley & Sons, 1991)

    Single-molecule portrait of DNA and RNA double helices

    Full text link
    This is a pre-copyedited, author-produced version of an article accepted for publication in Integrative Biology following peer review. The version of record Arias-Gonzalez, J. Ricardo. 2014. Single-Molecule Portrait of DNA and RNA Double Helices. Integr. Biol. 6 (10). Oxford University Press (OUP): 904 25. doi:10.1039/c4ib00163j is available online at: https://doi.org/10.1039/c4ib00163j[EN] The composition and geometry of the genetic information carriers were described as double-stranded right helices sixty years ago. The flexibility of their sugar¿phosphate backbones and the chemistry of their nucleotide subunits, which give rise to the RNA and DNA polymers, were soon reported to generate two main structural duplex states with biological relevance: the so-called A and B forms. Double-stranded (ds) RNA adopts the former whereas dsDNA is stable in the latter. The presence of flexural and torsional stresses in combination with environmental conditions in the cell or in the event of specific sequences in the genome can, however, stabilize other conformations. Single-molecule manipulation, besides affording the investigation of the elastic response of these polymers, can test the stability of their structural states and transition models. This approach is uniquely suited to understanding the basic features of protein binding molecules, the dynamics of molecular motors and to shedding more light on the biological relevance of the information blocks of life. Here, we provide a comprehensive single-molecule analysis of DNA and RNA double helices in the context of their structural polymorphism to set a rigorous interpretation of their material response both inside and outside the cell. From early knowledge of static structures to current dynamic investigations, we review their phase transitions and mechanochemical behaviour and harness this fundamental knowledge not only through biological sciences, but also for Nanotechnology and Nanomedicine.We are sincerely indebted to S. Hormeno, F. Moreno-Herrero, B. Ibarra, J. L. Carrascosa, J. M. Valpuesta, M. Fuentes-Perez and C. Carrasco for their work throughout the years. C. Flors and A. Villasante are acknowledged for critical revision. This work was supported by Fundacion IMDEA Nanociencia.Arias-Gonzalez, JR. (2014). Single-molecule portrait of DNA and RNA double helices. Integrative Biology. 6(10):904-925. https://doi.org/10.1039/c4ib00163jS904925610Ivanov, V. I., Minchenkova, L. E., Minyat, E. E., Frank-Kamenetskii, M. D., & Schyolkina, A. K. (1974). The B̄ to Ā transition of DNA in solution. Journal of Molecular Biology, 87(4), 817-833. doi:10.1016/0022-2836(74)90086-2FRANKLIN, R. E., & GOSLING, R. G. (1953). Molecular Configuration in Sodium Thymonucleate. Nature, 171(4356), 740-741. doi:10.1038/171740a0WATSON, J. D., & CRICK, F. H. C. (1953). Molecular Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid. Nature, 171(4356), 737-738. doi:10.1038/171737a0ARNOTT, S., FULLER, W., HODGSON, A., & PRUTTON, I. (1968). Molecular Conformations and Structure Transitions of RNA Complementary Helices and their Possible Biological Significance. Nature, 220(5167), 561-564. doi:10.1038/220561a0HAMILTON, L. D. (1968). DNA: Models and Reality. Nature, 218(5142), 633-637. doi:10.1038/218633a0Leslie, A. G. W., Arnott, S., Chandrasekaran, R., & Ratliff, R. L. (1980). Polymorphism of DNA double helices. Journal of Molecular Biology, 143(1), 49-72. doi:10.1016/0022-2836(80)90124-2Girod, J. C., Johnson, W. C., Huntington, S. K., & Maestre, M. F. (1973). Conformation of deoxyribonucleic acid in alcohol solutions. Biochemistry, 12(25), 5092-5096. doi:10.1021/bi00749a011Ivanov, V. I., Minchenkova, L. E., Schyolkina, A. K., & Poletayev, A. I. (1973). Different conformations of double-stranded nucleic acid in solution as revealed by circular dichroism. Biopolymers, 12(1), 89-110. doi:10.1002/bip.1973.360120109Jovin, T. M., Soumpasis, D. M., & McIntosh, L. P. (1987). The Transition Between B-DNA and Z-DNA. Annual Review of Physical Chemistry, 38(1), 521-558. doi:10.1146/annurev.pc.38.100187.002513Hall, K., Cruz, P., Tinoco, I., Jovin, T. M., & van de Sande, J. H. (1984). ‘Z-RNA’—a left-handed RNA double helix. Nature, 311(5986), 584-586. doi:10.1038/311584a0W. Saenger , Principles of nucleic acid structure , Springer-Verlag , 2nd edn, 1984Trantı́rek, L., Štefl, R., Vorlı́čková, M., Koča, J., Sklenářář, V., & Kypr, J. (2000). An A -type double helix of DNA having B -type puckering of the deoxyribose rings 1 1Edited by I. Tinoco. Journal of Molecular Biology, 297(4), 907-922. doi:10.1006/jmbi.2000.3592Bustamante, C., Bryant, Z., & Smith, S. B. (2003). Ten years of tension: single-molecule DNA mechanics. Nature, 421(6921), 423-427. doi:10.1038/nature01405Forth, S., Sheinin, M. Y., Inman, J., & Wang, M. D. (2013). Torque Measurement at the Single-Molecule Level. Annual Review of Biophysics, 42(1), 583-604. doi:10.1146/annurev-biophys-083012-130412Heller, I., Hoekstra, T. P., King, G. A., Peterman, E. J. G., & Wuite, G. J. L. (2014). Optical Tweezers Analysis of DNA–Protein Complexes. Chemical Reviews, 114(6), 3087-3119. doi:10.1021/cr4003006Strick, T. R., Allemand, J.-F., Bensimon, D., & Croquette, V. (2000). Stress-Induced Structural Transitions in DNA and Proteins. Annual Review of Biophysics and Biomolecular Structure, 29(1), 523-543. doi:10.1146/annurev.biophys.29.1.523Allemand, J.-F., Bensimon, D., & Croquette, V. (2003). Stretching DNA and RNA to probe their interactions with proteins. Current Opinion in Structural Biology, 13(3), 266-274. doi:10.1016/s0959-440x(03)00067-8Seeman, N. C. (2003). DNA in a material world. Nature, 421(6921), 427-431. doi:10.1038/nature01406Hormeño, S., Ibarra, B., Carrascosa, J. L., Valpuesta, J. M., Moreno-Herrero, F., & Arias-Gonzalez, J. R. (2011). Mechanical Properties of High-G⋅C Content DNA with A-Type Base-Stacking. Biophysical Journal, 100(8), 1996-2005. doi:10.1016/j.bpj.2011.02.051Hormeño, S., Ibarra, B., Valpuesta, J. M., Carrascosa, J. L., & Ricardo Arias-Gonzalez, J. (2011). Mechanical stability of low-humidity single DNA molecules. Biopolymers, 97(4), 199-208. doi:10.1002/bip.21728Hormeño, S., Moreno-Herrero, F., Ibarra, B., Carrascosa, J. L., Valpuesta, J. M., & Arias-Gonzalez, J. R. (2011). Condensation Prevails over B-A Transition in the Structure of DNA at Low Humidity. Biophysical Journal, 100(8), 2006-2015. doi:10.1016/j.bpj.2011.02.049Oberstrass, F. C., Fernandes, L. E., & Bryant, Z. (2012). Torque measurements reveal sequence-specific cooperative transitions in supercoiled DNA. Proceedings of the National Academy of Sciences, 109(16), 6106-6111. doi:10.1073/pnas.1113532109Allemand, J. F., Bensimon, D., Lavery, R., & Croquette, V. (1998). Stretched and overwound DNA forms a Pauling-like structure with exposed bases. Proceedings of the National Academy of Sciences, 95(24), 14152-14157. doi:10.1073/pnas.95.24.14152Pauling, L., & Corey, R. B. (1953). A Proposed Structure For The Nucleic Acids. Proceedings of the National Academy of Sciences, 39(2), 84-97. doi:10.1073/pnas.39.2.84Cluzel, P., Lebrun, A., Heller, C., Lavery, R., Viovy, J.-L., Chatenay, D., & Caron, F. o. (1996). DNA: An Extensible Molecule. Science, 271(5250), 792-794. doi:10.1126/science.271.5250.792Smith, S. B., Cui, Y., & Bustamante, C. (1996). Overstretching B-DNA: The Elastic Response of Individual Double-Stranded and Single-Stranded DNA Molecules. Science, 271(5250), 795-799. doi:10.1126/science.271.5250.795Besteman, K., Hage, S., Dekker, N. H., & Lemay, S. G. (2007). Role of Tension and Twist in Single-Molecule DNA Condensation. Physical Review Letters, 98(5). doi:10.1103/physrevlett.98.058103Fire, A., Xu, S., Montgomery, M. K., Kostas, S. A., Driver, S. E., & Mello, C. C. (1998). Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 391(6669), 806-811. doi:10.1038/35888Montgomery, M. K., Xu, S., & Fire, A. (1998). RNA as a target of double-stranded RNA-mediated genetic interference in Caenorhabditis elegans. Proceedings of the National Academy of Sciences, 95(26), 15502-15507. doi:10.1073/pnas.95.26.15502Timmons, L., & Fire, A. (1998). Specific interference by ingested dsRNA. Nature, 395(6705), 854-854. doi:10.1038/27579Guo, P. (2010). The emerging field of RNA nanotechnology. Nature Nanotechnology, 5(12), 833-842. doi:10.1038/nnano.2010.231Herrero-Galán, E., Fuentes-Perez, M. E., Carrasco, C., Valpuesta, J. M., Carrascosa, J. L., Moreno-Herrero, F., & Arias-Gonzalez, J. R. (2012). Mechanical Identities of RNA and DNA Double Helices Unveiled at the Single-Molecule Level. Journal of the American Chemical Society, 135(1), 122-131. doi:10.1021/ja3054755C. R. Calladine , H. R.Drew , B. F.Luise and A. A.Travers , Understanding DNA. The molecule and how it works , Elsevier, Academic Press , 3rd edn, 2004Brahms, J., & Mommaerts, W. F. H. M. (1964). A study of conformation of nucleic acids in solution by means of circular dichroism. Journal of Molecular Biology, 10(1), 73-88. doi:10.1016/s0022-2836(64)80029-2Minyat, E. E., Ivanov, V. I., Kritzyn, A. M., Minchenkova, L. E., & Schyolkina, A. K. (1979). Spermine and spermidine-induced B̄ to Ā transition of DNA in solution. Journal of Molecular Biology, 128(3), 397-409. doi:10.1016/0022-2836(79)90094-9Rupprecht, A., Piškur, J., Schultz, J., Nordenskiöld, L., Song, Z., & Lahajnar, G. (1994). Mechanochemical study of conformational transitions and melting of Li-, Na-, K-, and CsDNA fibers in ethanol-water solutions. Biopolymers, 34(7), 897-920. doi:10.1002/bip.360340709Albiser, G., Lamiri, A., & Premilat, S. (2001). The A–B transition: temperature and base composition effects on hydration of DNA. International Journal of Biological Macromolecules, 28(3), 199-203. doi:10.1016/s0141-8130(00)00160-4Usatyi, A. F., & Shlyakhtenko, L. S. (1974). Melting of DNA in ethanol-water solutions. Biopolymers, 13(12), 2435-2446. doi:10.1002/bip.1974.360131204Calladine, C. R., & Drew, H. R. (1984). A base-centred explanation of the B-to-A transition in DNA. Journal of Molecular Biology, 178(3), 773-782. doi:10.1016/0022-2836(84)90251-1Lu, X.-J., Shakked, Z., & Olson, W. K. (2000). A-form Conformational Motifs in Ligand-bound DNA Structures. Journal of Molecular Biology, 300(4), 819-840. doi:10.1006/jmbi.2000.3690Setlow, P. (1992). DNA in dormant spores of Bacillus species is in an A-like conformation. Molecular Microbiology, 6(5), 563-567. doi:10.1111/j.1365-2958.1992.tb01501.xAbels, J. A., Moreno-Herrero, F., van der Heijden, T., Dekker, C., & Dekker, N. H. (2005). Single-Molecule Measurements of the Persistence Length of Double-Stranded RNA. Biophysical Journal, 88(4), 2737-2744. doi:10.1529/biophysj.104.052811Ban, C., Ramakrishnan, B., & Sundaralingam, M. (1994). Crystal structure of the highly distorted chimeric decamer r(C)d(CGGCGCCG)r(G).spermine complex — spermine binding to phosphate only and minor groove tertiary base-pairing. Nucleic Acids Research, 22(24), 5466-5476. doi:10.1093/nar/22.24.5466Cheetham, G. M. (1999). Structure of a Transcribing T7 RNA Polymerase Initiation Complex. Science, 286(5448), 2305-2309. doi:10.1126/science.286.5448.2305Zimmerman, S. B., & Pheiffer, B. H. (1981). A RNA.DNA hybrid that can adopt two conformations: an x-ray diffraction study of poly(rA).poly(dT) in concentrated solution or in fibers. Proceedings of the National Academy of Sciences, 78(1), 78-82. doi:10.1073/pnas.78.1.78Dickerson, R., Drew, H., Conner, B., Wing, R., Fratini, A., & Kopka, M. (1982). The anatomy of A-, B-, and Z-DNA. Science, 216(4545), 475-485. doi:10.1126/science.7071593Malenkov, G., Minchenkova, L., Minyat, E., Schyolkina, A., & Ivanov, V. (1975). The nature of the - transition of DNA in solution. FEBS Letters, 51(1-2), 38-42. doi:10.1016/0014-5793(75)80850-7Zimmerman, S. B., & Pheiffer, B. H. (1980). Does DNA adopt the C form in concentrated salt solutions or in organic solvent/water mixtures? An X-ray diffraction study of DNA fibers immersed in various media. Journal of Molecular Biology, 142(3), 315-330. doi:10.1016/0022-2836(80)90275-2Ivanov, V. I., & Minyat, E. E. (1981). The transitions between left- and right-handed forms of poly(dG-dC). Nucleic Acids Research, 9(18), 4783-4798. doi:10.1093/nar/9.18.4783Thomas, T. J., & Messner, R. P. (1986). A left-handed (Z) conformation of poly(dA-dC).poly(dG-dT) induced by polyamines. Nucleic Acids Research, 14(16), 6721-6733. doi:10.1093/nar/14.16.6721Wang, A. H.-J., Quigley, G. J., Kolpak, F. J., Crawford, J. L., van Boom, J. H., van der Marel, G., & Rich, A. (1979). Molecular structure of a left-handed double helical DNA fragment at atomic resolution. Nature, 282(5740), 680-686. doi:10.1038/282680a0Popenda, M. (2004). High salt solution structure of a left-handed RNA double helix. Nucleic Acids Research, 32(13), 4044-4054. doi:10.1093/nar/gkh736Klump, H. H., & Jovin, T. M. (1987). Formation of a left-handed RNA double helix: energetics of the A-Z transition of poly[r(G-C)] in concentrated sodium perchlorate solutions. Biochemistry, 26(16), 5186-5190. doi:10.1021/bi00390a043Krzyżaniak, A., Barciszewski, J., Fürste, J. P., Bald, R., Erdmann, V. A., Salański, P., & Jurczak, J. (1994). A-Z-RNA conformational changes effected by high pressure. International Journal of Biological Macromolecules, 16(3), 159-162. doi:10.1016/0141-8130(94)90044-2Zarling, D. A., Calhoun, C. J., Hardin, C. C., & Zarling, A. H. (1987). Cytoplasmic Z-RNA. Proceedings of the National Academy of Sciences, 84(17), 6117-6121. doi:10.1073/pnas.84.17.6117Liu, L. F., & Wang, J. C. (1987). Supercoiling of the DNA template during transcription. Proceedings of the National Academy of Sciences, 84(20), 7024-7027. doi:10.1073/pnas.84.20.7024Rich, A., & Zhang, S. (2003). Z-DNA: the long road to biological function. Nature Reviews Genetics, 4(7), 566-572. doi:10.1038/nrg1115Hardin, C. C., Zarling, D. A., Puglisi, J. D., Trulson, M. O., Davis, P. W., & Tinoco, I. (1987). Stabilization of Z-RNA by chemical bromination and its recognition by anti-Z-DNA antibodies. Biochemistry, 26(16), 5191-5199. doi:10.1021/bi00390a044Rich, A., Nordheim, A., & Wang, A. H. J. (1984). The Chemistry and Biology of Left-Handed Z-DNA. Annual Review of Biochemistry, 53(1), 791-846. doi:10.1146/annurev.bi.53.070184.004043Brown, B. A., Lowenhaupt, K., Wilbert, C. M., Hanlon, E. B., & Rich, A. (2000). The Zalpha domain of the editing enzyme dsRNA adenosine deaminase binds left-handed Z-RNA as well as Z-DNA. Proceedings of the National Academy of Sciences, 97(25), 13532-13536. doi:10.1073/pnas.240464097Placido, D., Brown, B. A., Lowenhaupt, K., Rich, A., & Athanasiadis, A. (2007). A Left-Handed RNA Double Helix Bound by the Zα Domain of the RNA-Editing Enzyme ADAR1. Structure, 15(4), 395-404. doi:10.1016/j.str.2007.03.001Arnott, S., & Hukins, D. W. L. (1972). Optimised parameters for A-DNA and B-DNA. Biochemical and Biophysical Research Communications, 47(6), 1504-1509. doi:10.1016/0006-291x(72)90243-4Arnott, S., Hukins, D. W. L., & Dover, S. D. (1972). Optimised parameters for RNA double-helices. Biochemical and Biophysical Research Communications, 48(6), 1392-1399. doi:10.1016/0006-291x(72)90867-4ARNOTT, S., & HUKINS, D. W. L. (1969). Conservation of Conformation in Mono and Poly-nucleotides. Nature, 224(5222), 886-888. doi:10.1038/224886a0Cheatham, T. E., Crowley, M. F., Fox, T., & Kollman, P. A. (1997). A molecular level picture of the stabilization of A-DNA in mixed ethanol-water solutions. Proceedings of the National Academy of Sciences, 94(18), 9626-9630. doi:10.1073/pnas.94.18.9626Mazur, A. K. (2003). TitrationinSilicoof Reversible B ↔ A Transitions in DNA. Journal of the American Chemical Society, 125(26), 7849-7859. doi:10.1021/ja034550jNg, H.-L., Kopka, M. L., & Dickerson, R. E. (2000). The structure of a stable intermediate in the A left-right-arrow B DNA helix transition. Proceedings of the National Academy of Sciences, 97(5), 2035-2039. doi:10.1073/pnas.040571197Vargason, J. M., Henderson, K., & Ho, P. S. (2001). A crystallographic map of the transition from B-DNA to A-DNA. Proceedings of the National Academy of Sciences, 98(13), 7265-7270. doi:10.1073/pnas.121176898Saenger, W., Hunter, W. N., & Kennard, O. (1986). DNA conformation is determined by economics in the hydration of phosphate groups. Nature, 324(6095), 385-388. doi:10.1038/324385a0Pastor, N. (2005). The B- to A-DNA Transition and the Reorganization of Solvent at the DNA Surface. Biophysical Journal, 88(5), 3262-3275. doi:10.1529/biophysj.104.058339Hunter, C. A. (1993). Sequence-dependent DNA Structure. Journal of Molecular Biology, 230(3), 1025-1054. doi:10.1006/jmbi.1993.1217Mahendrasingam, A., Rhodes, N. J., Goodwin, D. C., Nave, C., Pigram, W. J., Fuller, W., … Vergne, J. (1983). Conformational transitions in oriented fibres of the synthetic polynucleotide poly[d(AT)]·poly[d(AT)] double helix. Nature, 301(5900), 535-537. doi:10.1038/301535a0Thomas, G. J., & Benevides, J. M. (1985). An A-helix structure for poly(dA-dT) · poly(dA-dT). Biopolymers, 24(6), 1101-1105. doi:10.1002/bip.360240613Borovok, N., Molotsky, T., Ghabboun, J., Cohen, H., Porath, D., & Kotlyar, A. (2007). Poly(dG)-poly(dC) DNA appears shorter than poly(dA)-poly(dT) and possibly adopts an A-related conformation on a mica surface under ambient conditions. FEBS Letters, 581(30), 5843-5846. doi:10.1016/j.febslet.2007.11.058Mazur, A. K. (2005). Electrostatic Polymer Condensation and the A/B Polymorphism in DNA:  Sequence Effects. Journal of Chemical Theory and Computation, 1(2), 325-336. doi:10.1021/ct049926dMinchenkova, L. E., Schyolkina, A. K., Chernov, B. K., & Ivanov, V. I. (1986). CC/GG Contacts Facilitate the B to A Transition of DMA in Solution. Journal of Biomolecular Structure and Dynamics, 4(3), 463-476. doi:10.1080/07391102.1986.10506362NARA-INUI, H., AKUTSU, H., & KYOGOKU, Y. (1985). Alcohol Induced B-A Transition of DNAs with Different Base Compositions Studied by Circular Dichroism. The Journal of Biochemistry, 98(3), 629-636. doi:10.1093/oxfordjournals.jbchem.a135319Nishimura, Y., Torigoe, C., & Tsuboi, M. (1985). An A-form poly(dG) · poly(dC) in H2O solution. Biopolymers, 24(9), 1841-1844. doi:10.1002/bip.360240913Pilet, J., & Brahms, J. (1973). Investigation of DNA structural changes by infrared spectroscopy. Biopolymers, 12(2), 387-403. doi:10.1002/bip.1973.360120215Tolstorukov, M. Y., Ivanov, V. I., Malenkov, G. G., Jernigan, R. L., & Zhurkin, V. B. (2001). Sequence-Dependent B↔A Transition in DNA Evaluated with Dimeric and Trimeric Scales. Biophysical Journal, 81(6), 3409-3421. doi:10.1016/s0006-3495(01)75973-5Deng, H. (2000). Structural basis of polyamine-DNA recognition: spermidine and spermine interactions with genomic B-DNAs of different GC content probed by Raman spectroscopy. Nucleic Acids Research, 28(17), 3379-3385. doi:10.1093/nar/28.17.3379Jain, S., Zon, G., & Sundaralingam, M. (1989). Base only binding of spermine in the deep groove of the A-DNA octamer d(GTGTACAC). Biochemistry, 28(6), 2360-2364. doi:10.1021/bi00432a002Ouameur, A. A., & Tajmir-Riahi, H.-A. (2004). Structural Analysis of DNA Interactions with Biogenic Polyamines and Cobalt(III)hexamine Studied by Fourier Transform Infrared and Capillary Electrophoresis. Journal of Biological Chemistry, 279(40), 42041-42054. doi:10.1074/jbc.m406053200Real, A. N., & Greenall, R. J. (2004). Influence of Spermine on DNA Conformation in a Molecular Dynamics Trajectory of d(CGCGAATTCGCG)2: Major Groove Binding by One Spermine Molecule Delays the A→B Transition. Journal of Biomolecular Structure and Dynamics, 21(4), 469-487. doi:10.1080/07391102.2004.10506941Bauer, C., & Wang, A. H.-J. (1997). Bridged cobalt amine complexes induce DNA conformational changes effectively. Journal of Inorganic Biochemistry, 68(2), 129-135. doi:10.1016/s0162-0134(97)00083-4Patel, M. M., & Anchordoquy, T. J. (2006). Ability of spermine to differentiate between DNA sequences—Preferential stabilization of A-tracts. Biophysical Chemistry, 122(1), 5-15. doi:10.1016/j.bpc.2006.02.001Thomas*, T., & Thomas, T. J. (2001). Polyamines in cell growth and cell death: molecular mechanisms and therapeutic applications. Cellular and Molecular Life Sciences, 58(2), 244-258. doi:10.1007/pl00000852Cheatham, T. E., & Kollman, P. A. (1997). Insight into the stabilization of A-DNA by specific ion association: spontaneous B-DNA to A-DNA transitions observed in molecular dynamics simulations of d[ACCCGCGGGT]2 in the presence of hexaamminecobalt(III). Structure, 5(10), 1297-1311. doi:10.1016/s0969-2126(97)00282-7Bloomfield, V. A. (1997). DNA condensation by multivalent cations. Biopolymers, 44(3), 269-282. doi:10.1002/(sici)1097-0282(1997)44:33.0.co;2-tRobinson, H., & Wang, A. H.-J. (1996). Neomycin, Spermine and Hexaamminecobalt(III) Share Common Structural Motifs in Converting B- to A-DNA. Nucleic Acids Research, 24(4), 676-682. doi:10.1093/nar/24.4.676Xu, Q., Shoemaker, R. K., & Braunlin, W. H. (1993). Induction of B-A transitions of deoxyoligonucleotides by multivalent cations in dilute aqueous solution. Biophysical Journal, 65(3), 1039-1049. doi:10.1016/s0006-3495(93)81163-9Subirana, J. A., & Soler-López, M. (2003). Cations as Hydrogen Bond Donors: A View of Electrostatic Interactions in DNA. Annual Review of Biophysics and Biomolecular Structure, 32(1), 27-45. doi:10.1146/annurev.biophys.32.110601.141726Mei, H. Y., & Barton, J. K. (1988). Tris(tetramethylphenanthroline)ruthenium(II): a chiral probe that cleaves A-DNA conformations. Proceedings of the National Academy of Sciences, 85(5), 1339-1343. doi:10.1073/pnas.85.5.1339Li, T.-K., Barbieri, C. M., Lin, H.-C., Rabson, A. B., Yang, G., Fan, Y., … Pilch, D. S. (2004). Drug Targeting of HIV-1 RNA·DNA Hybrid Structures:  Thermodynamics of Recognition and Impact on Reverse Tran

    Writing, Proofreading and Editing in Information Theory

    Get PDF
    [EN] Information is a physical entity amenable to be described by an abstract theory. The concepts associated with the creation and post-processing of the information have not, however, been mathematically established, despite being broadly used in many fields of knowledge. Here, inspired by how information is managed in biomolecular systems, we introduce writing, entailing any bit string generation, and revision, as comprising proofreading and editing, in information chains. Our formalism expands the thermodynamic analysis of stochastic chains made up of material subunits to abstract strings of symbols. We introduce a non-Markovian treatment of operational rules over the symbols of the chain that parallels the physical interactions responsible for memory effects in material chains. Our theory underlies any communication system, ranging from human languages and computer science to gene evolution.This work was supported by the Spanish Ministry of Economy and Competitiveness (MINECO, Grant MAT2015-71806-R). IMDEANanociencia acknowledges support from the 'Severo Ochoa' Programme for Centres of Excellence in R&D (MINECO, Grant SEV-2016-0686). These funds covered the costs to publish in open access.Arias-Gonzalez, JR. (2018). Writing, Proofreading and Editing in Information Theory. Entropy. 20(5):1-10. https://doi.org/10.3390/e20050368S11020

    Microscopically Reversible Pathways with Memory

    Full text link
    [EN] Statistical mechanics is a physics theory that deals with ensembles of microstates of a system compatible with environmental constraints and that on average define a thermodynamic state. The evolution of a small system is normally subjected to changing constraints, as set by a protocol, and involves a stochastic dependence on previous events. Here, we generalize the dynamic trajectories described by a realization of a physical system without dissipation to include those in which the history of previous events is necessary to understand its future. This framework is then used to characterize the processes experienced by the stochastic system, as derived from ensemble averages over the available pathways. We find that the pathways that the system traces in the presence of a protocol entail different statistics from those in its absence and prove that both types of pathways are equivalent in the limit of independent events. Such equivalence implies that a thermodynamic system cannot evolve away from equilibrium in the absence of memory. These results are useful to interpret single-molecule experiments in biophysics and other fields in nanoscience, as well as an adequate platform to describe non-equilibrium processes.Work supported by Ministerio de Ciencia e Innovacion, grant number PID2019-107391RB-I00.Arias-Gonzalez, JR. (2021). Microscopically Reversible Pathways with Memory. Mathematics. 9(2):1-21. https://doi.org/10.3390/math9020127S1219

    Comment on "Information management in DNA replication modeled by directional, stochastic chains with memory" [J. Chem. Phys. 145, 185103 (2016)]

    Full text link
    Arias-Gonzalez, JR.; Aleja, D. (2020). Comment on "Information management in DNA replication modeled by directional, stochastic chains with memory" [J. Chem. Phys. 145, 185103 (2016)]. The Journal of Chemical Physics. 152(4):1-2. https://doi.org/10.1063/1.5140055S121524Arias-Gonzalez, J. R. (2016). Information management in DNA replication modeled by directional, stochastic chains with memory. The Journal of Chemical Physics, 145(18), 185103. doi:10.1063/1.4967335The Journal of Chemical Physics14518185103201
    • …
    corecore