527 research outputs found
The Gysin sequence for -actions on manifolds
We construct a Gysin sequence associated to any smooth -action
on a smooth manifold.Comment: Accepted for publication in Publicationes Mathematicae Debrecen,
scheduled for 2014 Publicationes Mathematicae Debrecen (2014
Top dimensional group of the basic intersection cohomology for singular riemannian foliations
It is known that, for a regular riemannian foliation on a compact manifold,
the properties of its basic cohomology (non-vanishing of the top-dimensional
group and Poincar\'e Duality) and the tautness of the foliation are closely
related. If we consider singular riemannian foliations, there is little or no
relation between these properties. We present an example of a singular
isometric flow for which the top dimensional basic cohomology group is
non-trivial, but its basic cohomology does not satisfy the Poincar\'e Duality
property. We recover this property in the basic intersection cohomology. It is
not by chance that the top dimensional basic intersection cohomology groups of
the example are isomorphic to either 0 or . We prove in this Note
that this holds for any singular riemannian foliation of a compact connected
manifold. As a Corollary, we get that the tautness of the regular stratum of
the singular riemannian foliation can be detected by the basic intersection
cohomology.Comment: 11 pages. Accepted for publication in the Bulletin of the Polish
Academy of Science
Diversos sentidos de la palabra dolor
Los campos semánticos del dolor son principalmente dos:
dolor físico, dolor moral. Mientras que el primero sirve
como testigo de alguna disfunción corporal, y por eso inicialmente
se puede considerar que es algo positivo, el segundo
es más complicado de asumir: ¿qué sentido puede tener
el sufrimiento moral de una persona?, ¿para qué le sirve?
¿qué lo causa? A lo largo de este artículo se intenta hacer
una descripción fenomenológica de los sentidos que adquiere
en el lenguaje ordinario el dolor, tratando de desentrañar
qué función puede tener para la vida humana esa
oscura experiencia
Tautness for riemannian foliations on non-compact manifolds
For a riemannian foliation on a closed manifold , it is
known that is taut (i.e. the leaves are minimal submanifolds) if
and only if the (tautness) class defined by the mean curvature form
(relatively to a suitable riemannian metric ) is zero. In the
transversally orientable case, tautness is equivalent to the non-vanishing of
the top basic cohomology group , where n = \codim
\mathcal{F}. By the Poincar\'e Duality, this last condition is equivalent to
the non-vanishing of the basic twisted cohomology group
, when is oriented. When is
not compact, the tautness class is not even defined in general. In this work,
we recover the previous study and results for a particular case of riemannian
foliations on non compact manifolds: the regular part of a singular riemannian
foliation on a compact manifold (CERF).Comment: 18 page
- …