22 research outputs found

    On the role of smartness in helping consumers create sustainable outcomes

    Get PDF
    The proliferation of smart technologies transforms the way individual consumers perform tasks. Considerable research alludes that smart technologies are often related to domestic energy consumption. However, it remains unclear how such technologies transform tasks and thereby impact our planet. We explore the role of technological smartness in personal day-to-day tasks that help create a more sustainable future. In the absence of theory, but facing extensive changes in everyday life enabled by smart technologies, we draw on phenomenon-based theorizing (PBT) guidelines. As anchor, we refer to task endogeneity related to task-technology fit theory (TTF). As infusion, we employ theory on public goods. Our model proposes novel relations between the concepts of smart-autonomy and -transparency with sustainable task outcomes, mediated by task convenience and task significance. We discuss some implications, limitations, and future research opportunities

    ON THE ROLE OF SMARTNESS IN HELPING CONSUMERS CREATE SUSTAINABLE OUTCOMES

    Get PDF
    The proliferation of smart technologies transforms the way individual consumers perform tasks. Considerable research alludes that smart technologies are often related to domestic energy consumption. However, it remains unclear how such technologies transform tasks and thereby impact our planet. We explore the role of technological smartness in personal day-to-day tasks that help create a more sustainable future. In the absence of theory, but facing extensive changes in everyday life enabled by smart technologies, we draw on phenomenon-based theorizing (PBT) guidelines. As anchor, we refer to task endogeneity related to task-technology fit theory (TTF). As infusion, we employ theory on public goods. Our model proposes novel relations between the concepts of smart-autonomy and -transparency with sustainable task outcomes, mediated by task convenience and task significance. We discuss some implications, limitations, and future research opportunities

    Lunar Exploration Architecture Level Key Drivers and Sensitivities

    Get PDF
    Strategic level analysis of the integrated behavior of lunar transportation and lunar surface systems architecture options is performed to assess the benefit, viability, affordability, and robustness of system design choices. This analysis employs both deterministic and probabilistic modeling techniques so that the extent of potential future uncertainties associated with each option are properly characterized. The results of these analyses are summarized in a predefined set of high-level Figures of Merit (FOMs) so as to provide senior NASA Constellation Program (CxP) and Exploration Systems Mission Directorate (ESMD) management with pertinent information to better inform strategic level decision making. The strategic level exploration architecture model is designed to perform analysis at as high a level as possible but still capture those details that have major impacts on system performance. The strategic analysis methodology focuses on integrated performance, affordability, and risk analysis, and captures the linkages and feedbacks between these three areas. Each of these results leads into the determination of the high-level FOMs. This strategic level analysis methodology has been previously applied to Space Shuttle and International Space Station assessments and is now being applied to the development of the Constellation Program point-of-departure lunar architecture. This paper provides an overview of the strategic analysis methodology and the lunar exploration architecture analyses to date. In studying these analysis results, the strategic analysis team has identified and characterized key drivers affecting the integrated architecture behavior. These key drivers include inclusion of a cargo lander, mission rate, mission location, fixed-versus- variable costs/return on investment, and the requirement for probabilistic analysis. Results of sensitivity analysis performed on lunar exploration architecture scenarios are also presented

    Tropospheric emissions: Monitoring of pollution (TEMPO)

    Get PDF
    TEMPO was selected in 2012 by NASA as the first Earth Venture Instrument, for launch between 2018 and 2021. It will measure atmospheric pollution for greater North America from space using ultraviolet and visible spectroscopy. TEMPO observes from Mexico City, Cuba, and the Bahamas to the Canadian oil sands, and from the Atlantic to the Pacific, hourly and at high spatial resolution (~2.1 km N/S×4.4 km E/W at 36.5°N, 100°W). TEMPO provides a tropospheric measurement suite that includes the key elements of tropospheric air pollution chemistry, as well as contributing to carbon cycle knowledge. Measurements are made hourly from geostationary (GEO) orbit, to capture the high variability present in the diurnal cycle of emissions and chemistry that are unobservable from current low-Earth orbit (LEO) satellites that measure once per day. The small product spatial footprint resolves pollution sources at sub-urban scale. Together, this temporal and spatial resolution improves emission inventories, monitors population exposure, and enables effective emission-control strategies. TEMPO takes advantage of a commercial GEO host spacecraft to provide a modest cost mission that measures the spectra required to retrieve ozone (O), nitrogen dioxide (NO), sulfur dioxide (SO), formaldehyde (HCO), glyoxal (CHO), bromine monoxide (BrO), IO (iodine monoxide), water vapor, aerosols, cloud parameters, ultraviolet radiation, and foliage properties. TEMPO thus measures the major elements, directly or by proxy, in the tropospheric O chemistry cycle. Multi-spectral observations provide sensitivity to O in the lowermost troposphere, substantially reducing uncertainty in air quality predictions. TEMPO quantifies and tracks the evolution of aerosol loading. It provides these near-real-time air quality products that will be made publicly available. TEMPO will launch at a prime time to be the North American component of the global geostationary constellation of pollution monitoring together with the European Sentinel-4 (S4) and Korean Geostationary Environment Monitoring Spectrometer (GEMS) instruments.Peer Reviewe

    Entanglement entropy of disordered quantum chains following a global quench

    No full text
    corecore