3,861 research outputs found

    Oil seal effects and subsynchronous vibrations in high-speed compressors

    Get PDF
    Oil seals are commonly used in high speed multistage compressors. If the oil seal ring becomes locked up against the fixed portion of the seal, high oil film crosscoupled stiffnesses can result. A method of analysis for determining if the oil seals are locked up or not is discussed. The method is then applied to an oil seal in a compressor with subsynchronous vibration problems

    Aerodynamic stiffness of an unbound eccentric whirling centrifugal impeller with an infinite number of blades

    Get PDF
    An unbounded eccentric centrifugal impeller with an infinite number of log spiral blades undergoing synchronous whirling in an incompressible fluid is considered. The forces acting on it due to coriolis forces, centripetal forces, changes in linear momentum, changes in pressure due to rotating and changes in pressure due to changes in linear momentum are evaluated

    Design and application of squeeze film dampers for turbomachinery stabilization

    Get PDF
    The steady-state transient response of the squeeze film damper bearing was investigated. Both the steady-state and transient equations for the hydrodynamic bearing forces are derived; the steady-state equations were used to determine the damper equivalent stiffness and damping coefficients. These coefficients are used to find the damper configuration which will provide the optimum support characteristics based on a stability analysis of the rotor-bearing system. The effects of end seals and cavitated fluid film are included. The transient analysis of rotor-bearing systems was conducted by coupling the damping and rotor equations and integrating forward in time. The effects of unbalance, cavitation, and retainer springs are included. Methods of determining the stability of a rotor-bearing system under the influence of aerodynamic forces and internal shaft friction are discussed

    Hydraulic forces on a centrifugal impeller undergoing synchronous whirl

    Get PDF
    High speed centrifugal rotating machinery with large vibrations caused by aerodynamic forces on impellers was examined. A method to calculate forces in a two dimensional orbiting impeller in an unbounded fluid with nonuniform entering flow was developed. A finite element model of the full impeller is employed to solve the inviscid flow equations. Five forces acting on the impeller are: Coriolis forces, centripetal forces, changes in linear momentum, changes in pressure due to rotation and pressure changes due to linear momentum. Both principal and cross coupled stiffness coefficients are calculated for the impeller

    Vibration limiting of rotors by feedback control

    Get PDF
    Experimental findings of a three mass rotor with four channels of feedback control are reported. The channels are independently controllable with force being proportional to the velocity and/or instantaneous displacement from equilibrium of the shaft at the noncontacting probe locations (arranged in the vertical and horizontal attitudes near the support bearings). The findings suggest that automatic feedback control of rotors is feasible for limiting certain vibration levels. Control of one end of a rotor does afford some predictable vibration limiting of the rotor at the other end

    Design and test of a magnetic thrust bearing

    Get PDF
    A magnetic thrust bearing can be employed to take thrust loads in rotating machinery. The design and construction of a prototype magnetic thrust bearing for a high load per weight application is described. The theory for the bearing is developed. Fixtures were designed and the bearing was tested for load capacity using a universal testing machine. Various shims were employed to have known gap thicknesses. A comparison of the theory and measured results is presented

    Digital control of magnetic bearings supporting a multimass flexible rotor

    Get PDF
    The characteristics of magnetic bearings used to support a three mass flexible rotor operated at speeds up to 14,000 RPM are discussed. The magnetic components of the bearing are of a type reported in the literature previously, but the earlier analog controls were replaced by digital ones. Analog-to-digital and digital-to-analog converters and digital control software were installed in an AT&T PC. This PC-based digital controller was used to operate one of the magnetic bearings on the test rig. Basic proportional-derivative control was applied to the bearings, and the bearing stiffness and damping characteristics were evaluated. Particular attention is paid to the frequency dependent behavior of the stiffness and damping properties, and comparisons are made between the actual controllers and ideal proportional-derivative control

    Homogenization of the one-dimensional wave equation

    Full text link
    We present a method for two-scale model derivation of the periodic homogenization of the one-dimensional wave equation in a bounded domain. It allows for analyzing the oscillations occurring on both microscopic and macroscopic scales. The novelty reported here is on the asymptotic behavior of high frequency waves and especially on the boundary conditions of the homogenized equation. Numerical simulations are reported

    Molecular architecture of rabbit skeletal muscle aldolase at 2.7-A resolution.

    Full text link
    • …
    corecore