8,048 research outputs found
Molecular Electroporation and the Transduction of Oligoarginines
Certain short polycations, such as TAT and polyarginine, rapidly pass through
the plasma membranes of mammalian cells by an unknown mechanism called
transduction as well as by endocytosis and macropinocytosis. These
cell-penetrating peptides (CPPs) promise to be medically useful when fused to
biologically active peptides. I offer a simple model in which one or more CPPs
and the phosphatidylserines of the inner leaflet form a kind of capacitor with
a voltage in excess of 180 mV, high enough to create a molecular electropore.
The model is consistent with an empirical upper limit on the cargo peptide of
40--60 amino acids and with experimental data on how the transduction of a
polyarginine-fluorophore into mouse C2C12 myoblasts depends on the number of
arginines in the CPP and on the CPP concentration. The model makes three
testable predictions.Comment: 15 pages, 5 figure
Efficiency at maximum power of interacting molecular machines
We investigate the efficiency of systems of molecular motors operating at
maximum power. We consider two models of kinesin motors on a microtubule: for
both the simplified and the detailed model, we find that the many-body
exclusion effect enhances the efficiency at maximum power of the many-motor
system, with respect to the single motor case. Remarkably, we find that this
effect occurs in a limited region of the system parameters, compatible with the
biologically relevant range.Comment: To appear in Phys. Rev. Let
Mean encounter times for cell adhesion in hydrodynamic flow: analytical progress by dimensional reduction
For a cell moving in hydrodynamic flow above a wall, translational and
rotational degrees of freedom are coupled by the Stokes equation. In addition,
there is a close coupling of convection and diffusion due to the
position-dependent mobility. These couplings render calculation of the mean
encounter time between cell surface receptors and ligands on the substrate very
difficult. Here we show for a two-dimensional model system how analytical
progress can be achieved by treating motion in the vertical direction by an
effective reaction term in the mean first passage time equation for the
rotational degree of freedom. The strength of this reaction term can either be
estimated from equilibrium considerations or used as a fit parameter. Our
analytical results are confirmed by computer simulations and allow to assess
the relative roles of convection and diffusion for different scaling regimes of
interest.Comment: Reftex, postscript figures include
Effect of dipolar moments in domain sizes of lipid bilayers and monolayers
Lipid domains are found in systems such as multi-component bilayer membranes
and single component monolayers at the air-water interface. It was shown by
Andelman et al. (Comptes Rendus 301, 675 (1985)) and McConnell et al. (Phys.
Chem. {\bf 91}, 6417 (1987)) that in monolayers, the size of the domains
results from balancing the line tension, which favors the formation of a large
single circular domain, against the electrostatic cost of assembling the
dipolar moments of the lipids. In this paper, we present an exact analytical
expression for the electric potential, ion distribution and electrostatic free
energy for different problems consisting of three different slabs with
different dielectric constants and Debye lengths, with a circular homogeneous
dipolar density in the middle slab. From these solutions, we extend the
calculation of domain sizes for monolayers to include the effects of finite
ionic strength, dielectric discontinuities (or image charges) and the
polarizability of the dipoles and further generalize the calculations to
account for domains in lipid bilayers. In monolayers, the size of the domains
is dependent on the different dielectric constants but independent of ionic
strength. In asymmetric bilayers, where the inner and outer leaflets have
different dipolar densities, domains show a strong size dependence with ionic
strength, with molecular-sized domains that grow to macroscopic phase
separation with increasing ionic strength. We discuss the implications of the
results for experiments and briefly consider their relation to other two
dimensional systems such as Wigner crystals or heteroepitaxial growth.Comment: 13 pages, 5 figues in eps Replaced with new version, one citation
added and a few statements corrected. The results of the paper are unchange
Dynamic entanglement in oscillating molecules and potential biological implications
We demonstrate that entanglement can persistently recur in an oscillating
two-spin molecule that is coupled to a hot and noisy environment, in which no
static entanglement can survive. The system represents a non-equilibrium
quantum system which, driven through the oscillatory motion, is prevented from
reaching its (separable) thermal equilibrium state. Environmental noise,
together with the driven motion, plays a constructive role by periodically
resetting the system, even though it will destroy entanglement as usual. As a
building block, the present simple mechanism supports the perspective that
entanglement can exist also in systems which are exposed to a hot environment
and to high levels of de-coherence, which we expect e.g. for biological
systems. Our results furthermore suggest that entanglement plays a role in the
heat exchange between molecular machines and environment. Experimental
simulation of our model with trapped ions is within reach of the current
state-of-the-art quantum technologies.Comment: Extended version, including supplementary information. 9 pages, 8
figure
Surface tension in bilayer membranes with fixed projected area
We study the elastic response of bilayer membranes with fixed projected area
to both stretching and shape deformations. A surface tension is associated to
each of these deformations. By using model amphiphilic membranes and computer
simulations, we are able to observe both the types of deformation, and thus,
both the surface tensions, related to each type of deformation, are measured
for the same system. These surface tensions are found to assume different
values in the same bilayer membrane: in particular they vanish for different
values of the projected area. We introduce a simple theory which relates the
two quantities and successfully apply it to the data obtained with computer
simulations
Undulation instability in a bilayer lipid membrane due to electric field interaction with lipid dipoles
Bilayer lipid membranes [BLMs] are an essential component of all biological
systems, forming a functional barrier for cells and organelles from the
surrounding environment. The lipid molecules that form membranes contain both
permanent and induced dipoles, and an electric field can induce the formation
of pores when the transverse field is sufficiently strong (electroporation).
Here, a phenomenological free energy is constructed to model the response of a
BLM to a transverse static electric field. The model contains a continuum
description of the membrane dipoles and a coupling between the headgroup
dipoles and the membrane tilt. The membrane is found to become unstable through
buckling modes, which are weakly coupled to thickness fluctuations in the
membrane. The thickness fluctuations, along with the increase in interfacial
area produced by membrane buckling, increase the probability of localized
membrane breakdown, which may lead to pore formation. The instability is found
to depend strongly on the strength of the coupling between the dipolar
headgroups and the membrane tilt as well as the degree of dipolar ordering in
the membrane.Comment: 29 pages 8 fig
Nematic and Polar order in Active Filament Solutions
Using a microscopic model of interacting polar biofilaments and motor
proteins, we characterize the phase diagram of both homogeneous and
inhomogeneous states in terms of experimental parameters. The polarity of motor
clusters is key in determining the organization of the filaments in homogeneous
isotropic, polarized and nematic states, while motor-induced bundling yields
spatially inhomogeneous structures.Comment: 4 pages. 3 figure
- …
