1,740 research outputs found
Recommended from our members
Machine Learning Optimization of p-Type Transparent Conducting Films
p-Type transparent conducting materials (p-TCMs) are important components of optoelectronic devices including solar cells, photodetectors, displays, and flexible sensors. Cu-Zn-S thin films prepared by chemical bath deposition (CBD) can have both high transparency in the visible range (>80%) as well as excellent hole conductivity (>1000 S cm-1). However, the interplay between the deposition parameters in the CBD process (metal and sulfur precursor concentrations, temperature, pH, complexing agents, etc.) creates a multidimensional parameter space such that optimization for a specific application is challenging and time-consuming. Here we show that strategic design of experiment combined with machine learning (ML) allows for the efficient optimization of p-TCM performance. The approach is guided by a figure of merit (FOM) calculated from the film conductivity and optical transmission in the desired spectral range. A specific example is shown using two steps of optimization using a selected subset of four experimental CBD factors. The ML model is based on support vector regression employing a radial basis function as the kernel function. 10-fold cross-validation was performed to mitigate overfitting. After the first round of optimization, predicted areas in the parameter space with maximal FOMs were selected for a second round of optimization. Films with optimal FOMs were incorporated into heterojunction solar cells and transparent photodiodes. The optimization approach shown here will be generally applicable to any materials synthesis process with multiple parameters
Summary of time requirements and potential improvements for Marine Recorder data entry.
The contract work has demonstrated that older data can be assessed and entered into the MR format. Older data has associated problems but is retrievable. The contract successfully imported all datasets as required. MNCR survey sheets fit well into the MR format.
The data validation and verification process can be improved. A number of computerised short cuts can be suggested and the process made more intuitive. Such a move is vital if MR is to be adopted as a standard by the recording community both on a voluntary level and potentially by consultancies
Microstructure, magneto-transport and magnetic properties of Gd-doped magnetron-sputtered amorphous carbon
The magnetic rare earth element gadolinium (Gd) was doped into thin films of
amorphous carbon (hydrogenated \textit{a}-C:H, or hydrogen-free \textit{a}-C)
using magnetron co-sputtering. The Gd acted as a magnetic as well as an
electrical dopant, resulting in an enormous negative magnetoresistance below a
temperature (). Hydrogen was introduced to control the amorphous carbon
bonding structure. High-resolution electron microscopy, ion-beam analysis and
Raman spectroscopy were used to characterize the influence of Gd doping on the
\textit{a-}GdC(:H) film morphology, composition, density and
bonding. The films were largely amorphous and homogeneous up to =22.0 at.%.
As the Gd doping increased, the -bonded carbon atoms evolved from
carbon chains to 6-member graphitic rings. Incorporation of H opened up the
graphitic rings and stabilized a -rich carbon-chain random network. The
transport properties not only depended on Gd doping, but were also very
sensitive to the ordering. Magnetic properties, such as the spin-glass
freezing temperature and susceptibility, scaled with the Gd concentration.Comment: 9 figure
Recommended from our members
Si photocathode with Ag-supported dendritic Cu catalyst for CO2 reduction
Si photocathodes integrated with Ag-supported dendritic Cu catalysts are used to perform light-driven reduction of CO2 to C2 and C3 products in aqueous solution. A back illumination geometry with an n-type Si absorber was used to permit the use of absorbing metallic catalysts. Selective carrier collection was accomplished by a p+ implantation on the illumination side and an n+ implantation followed by atomic layer deposition of TiO2 on the electrolyte site. The Ag-supported dendritic Cu CO2 reduction catalyst was formed by evaporation of Ag followed by high-rate electrodeposition of Cu to form a high surface area structure. Under simulated 1 sun illumination in 0.1 M CsHCO3 saturated with CO2, the photovoltage generated by the Si (∼600 mV) enables C2 and C3 products to be produced at -0.4 vs. RHE. Texturing of both sides of the Si increases the light-limited current density, due to reduced reflection on the illumination side, and also deceases the onset potential. Under simulated diurnal illumination conditions photocathodes maintain over 60% faradaic efficiency to hydrocarbon and oxygenate products (mainly ethylene, ethanol, propanol) for several days. After 10 days of testing, contamination from the counter electrode is observed, which causes an increase in hydrogen production. This effect is mitigated by a regeneration procedure which restores the original catalyst selectivity. A tandem, self-powered CO2 reduction device was formed by coupling a Si photocathode with two series-connected semitransparent CH3NH3PbI3 perovskite solar cells, achieving an efficiency for the conversion of sunlight to hydrocarbons and oxygenates of 1.5% (3.5% for all products)
Coherence of Spin Qubits in Silicon
Given the effectiveness of semiconductor devices for classical computation
one is naturally led to consider semiconductor systems for solid state quantum
information processing. Semiconductors are particularly suitable where local
control of electric fields and charge transport are required. Conventional
semiconductor electronics is built upon these capabilities and has demonstrated
scaling to large complicated arrays of interconnected devices. However, the
requirements for a quantum computer are very different from those for classical
computation, and it is not immediately obvious how best to build one in a
semiconductor. One possible approach is to use spins as qubits: of nuclei, of
electrons, or both in combination. Long qubit coherence times are a
prerequisite for quantum computing, and in this paper we will discuss
measurements of spin coherence in silicon. The results are encouraging - both
electrons bound to donors and the donor nuclei exhibit low decoherence under
the right circumstances. Doped silicon thus appears to pass the first test on
the road to a quantum computer.Comment: Submitted to J Cond Matter on Nov 15th, 200
Effect of Native Defects on Optical Properties of InxGa1-xN Alloys
The energy position of the optical absorption edge and the free carrier
populations in InxGa1-xN ternary alloys can be controlled using high energy
4He+ irradiation. The blue shift of the absorption edge after irradiation in
In-rich material (x > 0.34) is attributed to the band-filling effect
(Burstein-Moss shift) due to the native donors introduced by the irradiation.
In Ga-rich material, optical absorption measurements show that the
irradiation-introduced native defects are inside the bandgap, where they are
incorporated as acceptors. The observed irradiation-produced changes in the
optical absorption edge and the carrier populations in InxGa1-xN are in
excellent agreement with the predictions of the amphoteric defect model
Structural and Electronic Properties of Amorphous and Polycrystalline In2Se3 Films
Structural and electronic properties of amorphous and single-phase
polycrystalline films of gamma- and kappa-In2Se3 have been measured. The stable
gamma phase nucleates homogeneously in the film bulk and has a high
resistivity, while the metastable kappa phase nucleates at the film surface and
has a moderate resistivity. The microstructures of hot-deposited and
post-annealed cold-deposited gamma films are quite different but the electronic
properties are similar. The increase in the resistivity of amorphous In2Se3
films upon annealing is interpreted in terms of the replacement of In-In bonds
with In-Se bonds during crystallization. Great care must be taken in the
preparation of In2Se3 films for electrical measurements as the presence of
excess chalcogen or surface oxidation may greatly affect the film properties.Comment: 23 pages and 12 figure
Spouse Enabling of Alcohol Abuse: Conception, Assessment, and Modification
This article presents a conception of spouse enabling of partner alcohol abuse, a review of its dysfunctions, and an approach to assessment and modification to reduce spouse enabling behavior. Based on experience with its use in unilateral family therapy with many spouses of treatment-refusing alcohol abusers, procedural guidelines, treatment methods, two case examples from a crossover experimental dyad, and clinical results for the two cases in the dyad are described. Also presented are practice issues, characteristics of spouse enabling as the), relate to disenabling intervention, and areas of possible application of the disenahling program
The efficacy of low vision devices for students in specialized schools for students who are blind in Kathmandu Valley, Nepal
In Nepal, children with low vision attend specialized schools for students who are totally blind and are treated as if they were totally blind. This study identified children with low vision and provided low vision devices to them. Of the 22% of the students in the school who had low vision, 78.5% benefited from the devices. Proper devices and counseling improved the quality of life of a significant number of these students. ©2008 AFB, All Rights Reserved
- …