860 research outputs found

    Dynamic Response of Ising System to a Pulsed Field

    Full text link
    The dynamical response to a pulsed magnetic field has been studied here both using Monte Carlo simulation and by solving numerically the meanfield dynamical equation of motion for the Ising model. The ratio R_p of the response magnetisation half-width to the width of the external field pulse has been observed to diverge and pulse susceptibility \chi_p (ratio of the response magnetisation peak height and the pulse height) gives a peak near the order-disorder transition temperature T_c (for the unperturbed system). The Monte Carlo results for Ising system on square lattice show that R_p diverges at T_c, with the exponent νz2.0\nu z \cong 2.0, while \chi_p shows a peak at TceT_c^e, which is a function of the field pulse width δt\delta t. A finite size (in time) scaling analysis shows that Tce=Tc+C(δt)1/xT_c^e = T_c + C (\delta t)^{-1/x}, with x=νz2.0x = \nu z \cong 2.0. The meanfield results show that both the divergence of R and the peak in \chi_p occur at the meanfield transition temperature, while the peak height in χp(δt)y\chi_p \sim (\delta t)^y, y1y \cong 1 for small values of δt\delta t. These results also compare well with an approximate analytical solution of the meanfield equation of motion.Comment: Revtex, Eight encapsulated postscript figures, submitted to Phys. Rev.

    Large-Signal Simulation of 94 GHz Pulsed Silicon DDR IMPATTs Including the Temperature Transient Effect

    Get PDF
    In this paper large-signal modeling and simulation has been carried to study the frequency chirping due to temperature transients and the large-signal power and efficiency of pulsed silicon Double-Drift Region (DDR) Impact Avalanche Transit Time (IMPATT) device operating at 94 GHz. A large-signal simulation method based on non-sinusoidal voltage excitation incorporating the transient thermal effect has been developed by the authors. Results show that the device is capable of delivering a peak pulsed power output of 17.5 W with 12.8% efficiency when the voltage modulation is 60%. The maximum junction temperature rise is 350.2 K for a peak pulsed bias current of 6.79 A with 100 ns pulsewidth and 0.5 percent duty cycle; whereas the chirp bandwidth is 8.3 GHz

    Nonequilibrium phase transition in the kinetic Ising model: Is transition point the maximum lossy point ?

    Full text link
    The nonequilibrium dynamic phase transition, in the kinetic Ising model in presence of an oscillating magnetic field, has been studied both by Monte Carlo simulation (in two dimension) and by solving the meanfield dynamical equation of motion for the average magnetization. The temperature variations of hysteretic loss (loop area) and the dynamic correlation have been studied near the transition point. The transition point has been identified as the minimum-correlation point. The hysteretic loss becomes maximum above the transition point. An analytical formulation has been developed to analyse the simulation results. A general relationship among hysteresis loop area, dynamic order parameter and dynamic correlation has also been developed.Comment: 8 pages Revtex and 4 Postscript figures; To appear in Phys. Rev.

    Effects of boundary conditions on the critical spanning probability

    Full text link
    The fractions of samples spanning a lattice at its percolation threshold are found by computer simulation of random site-percolation in two- and three-dimensional hypercubic lattices using different boundary conditions. As a byproduct we find pc=0.311605(5)p_c = 0.311605(5) in the cubic lattice.Comment: 8 pages Latex, To appear in Int. J. Mod. Phys.

    Quantifying the effects of spatial resolution and noise on galaxy metallicity gradients

    Get PDF
    Metallicity gradients are important diagnostics of galaxy evolution, because they record the history of events such as mergers, gas inflow and star-formation. However, the accuracy with which gradients can be measured is limited by spatial resolution and noise, and hence measurements need to be corrected for such effects. We use high resolution (~20 pc) simulation of a face-on Milky Way mass galaxy, coupled with photoionisation models, to produce a suite of synthetic high resolution integral field spectroscopy (IFS) datacubes. We then degrade the datacubes, with a range of realistic models for spatial resolution (2 to 16 beams per galaxy scale length) and noise, to investigate and quantify how well the input metallicity gradient can be recovered as a function of resolution and signal-to-noise ratio (SNR) with the intention to compare with modern IFS surveys like MaNGA and SAMI. Given appropriate propagation of uncertainties and pruning of low SNR pixels, we show that a resolution of 3-4 telescope beams per galaxy scale length is sufficient to recover the gradient to ~10-20% uncertainty. The uncertainty escalates to ~60% for lower resolution. Inclusion of the low SNR pixels causes the uncertainty in the inferred gradient to deteriorate. Our results can potentially inform future IFS surveys regarding the resolution and SNR required to achieve a desired accuracy in metallicity gradient measurements.Comment: 21 pages, 11 figures, 20 pages Supplementary Online Material provided with 10 additional figures, accepted for publication in MNRA

    Dynamic Phase Transition in a Time-Dependent Ginzburg-Landau Model in an Oscillating Field

    Full text link
    The Ginzburg-Landau model below its critical temperature in a temporally oscillating external field is studied both theoretically and numerically. As the frequency or the amplitude of the external force is changed, a nonequilibrium phase transition is observed. This transition separates spatially uniform, symmetry-restoring oscillations from symmetry-breaking oscillations. Near the transition a perturbation theory is developed, and a switching phenomenon is found in the symmetry-broken phase. Our results confirm the equivalence of the present transition to that found in Monte Carlo simulations of kinetic Ising systems in oscillating fields, demonstrating that the nonequilibrium phase transition in both cases belongs to the universality class of the equilibrium Ising model in zero field. This conclusion is in agreement with symmetry arguments [G. Grinstein, C. Jayaprakash, and Y. He, Phys. Rev. Lett. 55, 2527 (1985)] and recent numerical results [G. Korniss, C.J. White, P. A. Rikvold, and M. A. Novotny, Phys. Rev. E (submitted)]. Furthermore, a theoretical result for the structure function of the local magnetization with thermal noise, based on the Ornstein-Zernike approximation, agrees well with numerical results in one dimension.Comment: 16 pp. RevTex, 9 embedded ps figure

    Sensitivity of the Cherenkov Telescope Array to TeV photon emission from the Large Magellanic Cloud

    Get PDF
    A deep survey of the Large Magellanic Cloud at ∼0.1–100 TeV photon energies with the Cherenkov Telescope Array is planned. We assess the detection prospects based on a model for the emission of the galaxy, comprising the four known TeV emitters, mock populations of sources, and interstellar emission on galactic scales. We also assess the detectability of 30 Doradus and SN 1987A, and the constraints that can be derived on the nature of dark matter. The survey will allow for fine spectral studies of N 157B, N 132D, LMC P3, and 30 Doradus C, and half a dozen other sources should be revealed, mainly pulsar-powered objects. The remnant from SN 1987A could be detected if it produces cosmic-ray nuclei with a flat power-law spectrum at high energies, or with a steeper index 2.3–2.4 pending a flux increase by a factor of >3–4 over ∼2015–2035. Large-scale interstellar emission remains mostly out of reach of the survey if its >10 GeV spectrum has a soft photon index ∼2.7, but degree-scale 0.1–10 TeV pion-decay emission could be detected if the cosmic-ray spectrum hardens above >100 GeV. The 30 Doradus star-forming region is detectable if acceleration efficiency is on the order of 1−10 per cent of the mechanical luminosity and diffusion is suppressed by two orders of magnitude within <100 pc. Finally, the survey could probe the canonical velocity-averaged cross-section for self-annihilation of weakly interacting massive particles for cuspy Navarro–Frenk–White profiles

    Multiwavelength Observations of the Blazar PKS 0735+178 in Spatial and Temporal Coincidence with an Astrophysical Neutrino Candidate IceCube-211208A

    Get PDF
    We report on multiwavelength target-of-opportunity observations of the blazar PKS 0735+178, located 2°.2 away from the best-fit position of the IceCube neutrino event IceCube-211208A detected on 2021 December 8. The source was in a high-flux state in the optical, ultraviolet, X-ray, and GeV γ-ray bands around the time of the neutrino event, exhibiting daily variability in the soft X-ray flux. The X-ray data from Swift-XRT and NuSTAR characterize the transition between the low-energy and high-energy components of the broadband spectral energy distribution (SED), and the γ-ray data from Fermi-LAT, VERITAS, and H.E.S.S. require a spectral cutoff near 100 GeV. Both the X-ray and γ-ray measurements provide strong constraints on the leptonic and hadronic models. We analytically explore a synchrotron self-Compton model, an external Compton model, and a lepto-hadronic model. Models that are entirely based on internal photon fields face serious difficulties in matching the observed SED. The existence of an external photon field in the source would instead explain the observed γ-ray spectral cutoff in both the leptonic and lepto-hadronic models and allow a proton jet power that marginally agrees with the Eddington limit in the lepto-hadronic model. We show a numerical lepto-hadronic model with external target photons that reproduces the observed SED and is reasonably consistent with the neutrino event despite requiring a high jet power

    Cofinite Graphs and Their Profinite Completions

    Full text link
    We generalize the idea of cofinite groups, due to B. Hartley, [2]. First we define cofinite spaces in general. Then, as a special situation, we study cofinite graphs and their uniform completions.The idea of constructing a cofinite graph starts with defining a uniform topological graph Γ\Gamma, in an appropriate fashion. We endow abstract graphs with uniformities corresponding to separating filter bases of equivalence relations with finitely many equivalence classes over Γ\Gamma. It is established that for any cofinite graph there exists a unique cofinite completion
    corecore