11,700 research outputs found

    Wigner representation for polarization-momentum hyperentanglement generated in parametric down conversion, and its application to complete Bell-state measurement

    Full text link
    We apply the Wigner function formalism to the study of two-photon polarization-momentum hyperentanglement generated in parametric down conversion. It is shown that the consideration of a higher number of degrees of freedom is directly related to the extraction of additional uncorrelated sets of zeropoint modes at the source. We present a general expression for the description of the quantum correlations corresponding to the sixteen Bell base states, in terms of four beams whose amplitudes are correlated through the stochastic properties of the zeropoint field. A detailed analysis of the two experiments on complete Bell-state measurement included in [Walborn et al., Phys. Rev. A 68, 042313 (2003)] is made, emphasizing the role of the zeropoint field. Finally, we investigate the relationship between the zeropoint inputs at the source and the analysers, and the limits on optimal Bell-state measurement.Comment: 28 pages, 4 figure

    Partial Bell-state analysis with parametric down conversion in the Wigner function formalism

    Get PDF
    We apply the Wigner function formalism to partial Bell-state analysis using polarization entanglement produced in parametric down conversion. Two-photon statistics at a beam-splitter are reproduced by a wavelike description with zeropoint fluctuations of the electromagnetic field. In particular, the fermionic behaviour of two photons in the singlet state is explained from the invariance on the correlation properties of two light beams going through a balanced beam-splitter. Moreover, we show that a Bell-state measurement introduces some fundamental noise at the idle channels of the analyzers. As a consequence, the consideration of more independent sets of vacuum modes entering the crystal appears as a need for a complete Bell-state analysis

    Empirical Determinations of Key Physical Parameters Related to Classical Double Radio Sources

    Get PDF
    Multi-frequency radio observations of the radio bridge of powerful classical double radio sources can be used to determine: the beam power of the jets emanating from the AGN; the total time the source will actively produce jets that power large-scale radio emission; the thermal pressure of the medium in the vicinity of the radio source; and the total mass, including dark matter, of the galaxy or cluster of galaxies traced by the ambient gas that surrounds the radio source. The theoretical constructs that allow a determination of each of these quantities using radio observations are presented and discussed. Empirical determinations of each of these quantities are obtained and analyzed. A sample of 14 radio galaxies and 8 radio loud quasars with redshifts between zero and two for which there is enough radio information to be able to determine the physical parameters listed above was studied in detail. (abridged)Comment: Submitted to ApJ, LaTex, 26 total pages of text which includes captions & two tables, plus 13 EPS figures & 1 tabl

    Development of tunable high pressure CO2 laser for lidar measurements of pollutants and wind velocities

    Get PDF
    The problem of laser energy extraction at a tunable monochromatic frequency from an energetic high pressure CO2 pulsed laser plasma, for application to remote sensing of atmospheric pollutants by Differential Absorption Lidar (DIAL) and of wind velocities by Doppler Lidar, was investigated. The energy extraction principle analyzed is based on transient injection locking (TIL) at a tunable frequency. Several critical experiments for high gain power amplification by TIL are presented

    Experiences in teaching Hydrogen Technologies in the framework of the International Campus of Excellence Andalucia TECH

    Get PDF
    The increasing importance of hydrogen technologies is demanding prepared professionals in the numerous topics related to this energy vector. Apart from some basic and advanced courses given by actual experts in these topics, universities must play an important role in the general formation of future professionals. In this way, the International Campus of Excellence (ICE) Andalucía TECH has created several degrees taught jointly by its participating universities of Seville (US) and Málaga (UMA). Among those degrees, Energy Engineering is the best suited to the field of this conference because this degree provide future engineers with specialized training in energy generation, transformation and management. In relation to hydrogen technologies this degree includes a cross sectional optional unit named Hydrogen Based Systems (4.5 ECTS/112.5 h), which is placed in the last term of the fourth year and sharing space with work placement and mobility courses. This paper will present some author’s experiences as teachers of that unit during its short history of only three years. In spite of being a joint degree, which is coordinated between both universities (US and UMA) trying to give similar contents, it is interesting to highlight the differential experiences coming from the teachers of both universities in relation to the teaching methodologies and academic results.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Comparison of Four Space Propulsion Methods for Reducing Transfer Times of Manned Mars Mission

    Full text link
    We assess the possibility of reducing the travel time of a manned mission to Mars by examining four different propulsion methods, and keeping the mass at departure under 2,500 tonnes, for a fixed architecture. We evaluated representative systems of three different state of the art technologies (chemical, nuclear thermal, and electric), and one advance technology, the "Pure Electro-Magnetic Thrust" (PEMT) concept (proposed by Rubbia). A mission architecture mostly based on the Design Reference Architecture 5.0 is assumed in order to estimate the mass budget, that influences the performance of the propulsion system. Pareto curves of the duration of the mission and time of flight versus mass of mission are drawn. We conclude that the ion engine technology, combined with the classical chemical engine, yields the shortest mission times for this architecture with the lowest mass, and that chemical propulsion alone is the best to minimise travel time. The results obtained using the PEMT suggest that it could be a more suitable solution for farther destinations than Mars.Comment: Change in title, abstract and presentation so to clarify the main results. 14 pages, 7 figures and 2 table
    corecore