11,106 research outputs found

    Highly ionized atoms in cooling gas

    Get PDF
    The ionization of low density gas cooling from a high temperature was calculated. The evolution during the cooling is assumed to be isochoric, isobaric, or a combination of these cases. The calculations are used to predict the column densities and ultraviolet line luminosities of highly ionized atoms in cooling gas. In a model for cooling of a hot galactic corona, it is shown that the observed value of N(N V) can be produced in the cooling gas, while the predicted value of N(Si IV) falls short of the observed value by a factor of about 5. The same model predicts fluxes of ultraviolet emission lines that are a factor of 10 lower than the claimed detections of Feldman, Brune, and Henry. Predictions are made for ultraviolet lines in cooling flows in early-type galaxies and clusters of galaxies. It is shown that the column densities of interest vary over a fairly narrow range, while the emission line luminosities are simply proportional to the mass inflow rate

    BATSE Soft Gamma-Ray Observations of GROJ0422+32

    Full text link
    We report results of a comprehensive study of the soft gamma-ray (30 keV to 1.7 MeV) emission of GROJ0422+32 during its first known outburst in 1992. These results were derived from the BATSE earth-occultation database with the JPL data analysis package, EBOP (Enhanced BATSE Occultation Package). Results presented here focus primarily on the long-term temporal and spectral variability of the source emission associated with the outburst. The light curves with 1-day resolution in six broad energy-bands show the high-energy flux (>200 keV) led the low-energy flux (<200 keV) by ~5 days in reaching the primary peak, but lagged the latter by ~7 days in starting the declining phase. We confirm the "secondary maximum" of the low-energy (<200 keV) flux at TJD 8970-8981, ~120 days after the first maximum. Our data show that the "secondary maximum" was also prominent in the 200-300 keV band, but became less pronounced at higher energies. During this 200-day period, the spectrum evolved from a power-law with photon index of 1.75 on TJD 8839, to a shape that can be described by a Comptonized model or an exponential power law below 300 keV, with a variable power-law tail above 300 keV. The spectrum remained roughly in this two-component shape until ~9 November (TJD 8935) and then returned to the initial power-law shape with an index of ~2 until the end of the period. The correlation of the two spectral shapes with the high and low luminosities of the soft gamma-ray emission is strongly reminiscent of that seen in Cygnus X-1. We interpret these results in terms of the Advection Dominated Accretion Flow (ADAF) model with possibly a "jet-like" region that persistently produced the non-thermal power-law gamma rays observed throughout the event.Comment: 40 pages total, including 10 figures and 2 table

    Chandra Observations of SN 2004et and the X-ray Emission of Type IIp Supernovae

    Full text link
    We report the X-ray detection of the Type II-plateau supernova SN 2004et in the spiral galaxy NGC 6946, using the Chandra X-Ray Observatory. The position of the X-ray source was found to agree with the optical position within ~0.4 arcsec. Chandra also surveyed the region before the 2004 event, finding no X-ray emission at the location of the progenitor. For the post-explosion observations, a total of 202, 151, and 158 photons were detected in three pointings, each ~29 ks in length, on 2004 October 22, November 6, and December 3, respectively. The spectrum of the first observation is best fit by a thermal model with a temperature of kT=1.3 keV and a line-of-sight absorption of N_H=1.0 x 10^{22} cm^{-2}. The inferred unabsorbed luminosity (0.4-8 keV) is ~4x10^{38} erg/s, adopting a distance of 5.5 Mpc. A comparison between hard and soft counts on the first and third epochs indicates a softening over this time, although there is an insufficient number of photons to constrain the variation of temperature and absorption by spectral fitting. We model the emission as arising from the reverse shock region in the interaction between the supernova ejecta and the progenitor wind. For a Type IIP supernova with an extended progenitor, the cool shell formed at the time of shock wave breakout from the star can affect the initial evolution of the interaction shell and the absorption of radiation from the reverse shock. The observed spectral softening might be due to decreasing shell absorption. We find a pre-supernova mass loss rate of (2-2.5)x 10^{-6} M_{\odot} /yr for a wind velocity of 10 kms, which is in line with expectations for a Type IIP supernova.Comment: total 19 pages including 7 figures. ApJ, in press. See http://spider.ipac.caltech.edu/staff/rho/preprint/SN2004etms.ps for the paper including full resolution image

    Gamma-Ray Burst Environments and Progenitors

    Get PDF
    Likely progenitors for the GRBs (gamma-ray bursts) are the mergers of compact objects or the explosions of massive stars. These two cases have distinctive environments for the GRB afterglow: the compact object explosions occur in the ISM (interstellar medium) and those of massive stars occur in the preburst stellar wind. We calculate the expected afterglow for a burst in a Wolf-Rayet star wind and compare the results to those for constant, interstellar density. The optical afterglow for the wind case is generally expected to decline more steeply than in the constant density case, but this effect may be masked by variations in electron spectral index, and the two cases have the same evolution in the cooling regime. Observations of the concurrent radio and optical/X-ray evolution are especially useful for distinguishing between the two cases. The different rates of decline of the optical and X-ray afterglows of GRB 990123 suggest constant density interaction for this case. We have previously found strong evidence for wind interaction in SN 1998bw/GRB 980425 and here present a wind model for GRB 980519. We thus suggest that there are both wind type GRB afterglows with massive star progenitors and ISM type afterglows with compact binary star progenitors. The wind type bursts are likely to be accompanied by a supernova, but not the ISM type.Comment: 11 pages, 1 figure, revised version, ApJ Letters, in pres

    Moderate Asphericity of the SN 2002ic Circumstellar Envelope

    Get PDF
    The polarization of SN 2002ic interacting with a dense circumstellar envelope is calculated in the context of the asymmetric version of a previously proposed spherical interaction model. The circumstellar envelope is taken to be oblate. The observed polarization (Wang et al. 2004) can be reproduced for an aspect ratio of 0.65-0.7 assuming inclination angles >60 degrees. This model predicts a weak sensitivity of the line profiles to the orientation, in agreement with the absence of significant variations of the line profiles among SN 2002ic-like supernovae. We propose a test for distinguishing between the binary and single star progenitor scenarios based upon the polarization distribution function for the growing sample of these events.Comment: 13 pages, 4 figs., ApJ, accepte

    1.6 GHz VLBI Observations of SN 1979C: almost-free expansion

    Full text link
    We report on 1.6 GHz Very-Long-Baseline-Interferometry (VLBI) observations of supernova SN 1979C made on 18 November 2002. We derive a model-dependent supernova size. We also present a reanalysis of VLBI observations made by us on June 1999 and by other authors on February 2005. We conclude that, contrary to our earlier claim of strong deceleration in the expansion, SN 1979C has been undergoing almost-free expansion (m=0.91±0.09m = 0.91\pm0.09; R∝tmR \propto t^m) for over 25 years.Comment: 4 pages, 4 figures; submitted to A&A on 14 May 2009. Accepted on 7 Jul 200

    Time-dependence in Relativistic Collisionless Shocks: Theory of the Variable "Wisps" in the Crab Nebula

    Full text link
    We describe results from time-dependent numerical modeling of the collisionless reverse shock terminating the pulsar wind in the Crab Nebula. We treat the upstream relativistic wind as composed of ions and electron-positron plasma embedded in a toroidal magnetic field, flowing radially outward from the pulsar in a sector around the rotational equator. The relativistic cyclotron instability of the ion gyrational orbit downstream of the leading shock in the electron-positron pairs launches outward propagating magnetosonic waves. Because of the fresh supply of ions crossing the shock, this time-dependent process achieves a limit-cycle, in which the waves are launched with periodicity on the order of the ion Larmor time. Compressions in the magnetic field and pair density associated with these waves, as well as their propagation speed, semi-quantitatively reproduce the behavior of the wisp and ring features described in recent observations obtained using the Hubble Space Telescope and the Chandra X-Ray Observatory. By selecting the parameters of the ion orbits to fit the spatial separation of the wisps, we predict the period of time variability of the wisps that is consistent with the data. When coupled with a mechanism for non-thermal acceleration of the pairs, the compressions in the magnetic field and plasma density associated with the optical wisp structure naturally account for the location of X-ray features in the Crab. We also discuss the origin of the high energy ions and their acceleration in the equatorial current sheet of the pulsar wind.Comment: 13 pages, 4 figures, accepted to ApJ. High-resolution figures and mpeg movies available at http://astron.berkeley.edu/~anatoly/wisp

    Gem-induced cytoskeleton remodeling increases cellular migration of HTLV-1-infected cells, formation of infected-to-target T-cell conjugates and viral transmission

    Get PDF
    Efficient HTLV-1 viral transmission occurs through cell-to-cell contacts. The Tax viral transcriptional activator protein facilitates this process. Using a comparative transcriptomic analysis, we recently identified a series of genes up-regulated in HTLV-1 Tax expressing T-lymphocytes. We focused our attention towards genes that are important for cytoskeleton dynamic and thus may possibly modulate cell-to-cell contacts. We first demonstrate that Gem, a member of the small GTP-binding proteins within the Ras superfamily, is expressed both at the RNA and protein levels in Tax-expressing cells and in HTLV-1-infected cell lines. Using a series of ChIP assays, we show that Tax recruits CREB and CREB Binding Protein (CBP) onto a c-AMP Responsive Element (CRE) present in the gem promoter. This CRE sequence is required to drive Tax-activated gem transcription. Since Gem is involved in cytoskeleton remodeling, we investigated its role in infected cells motility. We show that Gem co-localizes with F-actin and is involved both in T-cell spontaneous cell migration as well as chemotaxis in the presence of SDF-1/CXCL12. Importantly, gem knock-down in HTLV-1-infected cells decreases cell migration and conjugate formation. Finally, we demonstrate that Gem plays an important role in cell-to-cell viral transmission
    • 

    corecore