347 research outputs found

    Gilvocarcin Gene Cluster, Recombinant Production and use Thereof

    Get PDF
    A nucleic acid molecule encoding the gilvocarcin V gene cluster and subunits thereof. Recombinant vectors and host cells comprising a nucleic acid compound encoding the gilvocarcin V gene cluster or subunits thereof. Host cells comprising recombinant vectors encoding the gilvocarcin polyketide synthase and gilvocarcin post-PKS modifying enzymes from Streptomyces griseoflavus can be used to produce gilvocarcin and functional gilvocarcin mutants, analogs and derivatives thereof with application as antibiotics, anticancer agents, immunosuppressants, antivirals, and neuroprotective agents

    Nanoparticulate formulations of mithramycin analogs for enhanced cytotoxicity

    Get PDF
    Mithramycin (MTM), a natural product of soil bacteria from the Streptomyces genus, displays potent anticancer activity but has been limited clinically by severe side effects and toxicities. Engineering of the MTM biosynthetic pathway has produced the 3-side-chain-modified analogs MTM SK (SK) and MTM SDK (SDK), which have exhibited increased anticancer activity and improved therapeutic index. However, these analogs still suffer from low bioavailability, short plasma retention time, and low tumor accumulation. In an effort to aid with these shortcomings, two nanoparticulate formulations, poly(ethylene glycol)-poly(aspartate hydrazide) self-assembled and cross-linked micelles, were investigated with regard to the ability to load and pH dependently release the drugs. Micelles were successfully formed with both nanoparticulate formulations of each drug analog, with an average size of 8.36 ± 3.21 and 12.19 ± 2.77 nm for the SK and SDK micelles and 29.56 ± 4.67 nm and 30.48 ± 7.00 nm for the SK and SDK cross-linked micelles respectively. All of the drug-loaded formulations showed a pH-dependent release of the drugs, which was accelerated as pH decreased from 7.4 to 5.0. The micelles retained biological activity of SK and SDK entrapped in the micelles, suppressing human A549 lung cancer cells effectively

    Semi-Synthetic Mithramycin Derivatives with Anti-Cancer Activity

    Get PDF
    Mithramycin derivatives and their pharmaceutically acceptable salts are disclosed. The mithramycin derivatives can be used in the treatment of Ewing sarcoma or other cancer or neuro-disease associated with an aberrant erythroblast transformation- specific transcription factor

    Glycosylate Derivatives of Mithramycin, Method of Preparation and Uses Thereof

    Get PDF
    The present invention provides compounds characterized by the formula (I), where each of the substituent radicals is described in the specification. The invention also describes the use of said compounds in the treatment of various diseases, including: cancer or tumoral processes in general, Paget\u27s disease, hypercalcaemia, hypercalciuria and neurological diseases (inter alia, Parkinson\u27s, Alzheimer\u27s, Huntington\u27s)

    Histone Deacetylase Inhibitors and Mithramycin A Impact a Similar Neuroprotective Pathway at a Crossroad between Cancer and Neurodegeneration

    Get PDF
    Mithramycin A (MTM) and histone deacetylase inhibitors (HDACi) are effective therapeutic agents for cancer and neurodegenerative diseases. MTM is a FDA approved aureolic acid-type antibiotic that binds to GC-rich DNA sequences and interferes with Sp1 transcription factor binding to its target sites (GC box). HDACi, on the other hand, modulate the activity of class I and II histone deacetylases. They mediate their protective function, in part, by regulating the acetylation status of histones or transcription factors, including Sp1, and in turn chromatin accessibility to the transcriptional machinery. Because these two classes of structurally and functionally diverse compounds mediate similar therapeutic functions, we investigated whether they act on redundant or synergistic pathways to protect neurons from oxidative death. Non-protective doses of each of the drugs do not synergize to create resistance to oxidative death suggesting that these distinct agents act via a similar pathway. Accordingly, we found that protection by MTM and HDACi is associated with diminished expression of the oncogene, Myc and enhanced expression of a tumor suppressor, p21waf1/cip1. We also find that neuroprotection by MTM or Myc knockdown is associated with downregulation of class I HDAC levels. Our results support a model in which the established antitumor drug MTM or canonical HDACi act via distinct mechanisms to converge on the downregulation of HDAC levels or activity respectively. These findings support the conclusion that an imbalance in histone acetylase and HDAC activity in favor of HDACs is key not only for oncogenic transformation, but also neurodegeneration

    Elucidation of the function of two glycosyltransferase genes (lanGT1 and lanGT4) involved in landomycin biosynthesis and generation of new oligosaccharide antibiotics

    Get PDF
    AbstractBackground: The genetic engineering of antibiotic-producing Streptomyces strains is an approach that became a successful methodology in developing new natural polyketide derivatives. Glycosyltransferases are important biosynthetic enzymes that link sugar moieties to aglycones, which often derive from polyketides. Biological activity is frequently generated along with this process. Here we report the use of glycosyltransferase genes isolated from the landomycin biosynthetic gene cluster to create hybrid landomycin/urdamycin oligosaccharide antibiotics.Results: Production of several novel urdamycin derivatives by a mutant of Streptomyces fradiae Tü2717 has been achieved in a combinatorial biosynthetic approach using glycosyltransferase genes from the landomycin producer Streptomyces cyanogenus S136. For the generation of gene cassettes useful for combinatorial biosynthesis experiments new vectors named pMUNI, pMUNII and pMUNIII were constructed. These vectors facilitate the construction of gene combinations taking advantage of the compatible MunI and EcoRI restriction sites.Conclusions: The high-yielding production of novel oligosaccharide antibiotics using glycosyltransferase gene cassettes generated in a very convenient way proves that glycosyltransferases can be flexible towards the alcohol substrate. In addition, our results indicate that LanGT1 from S. cyanogenus S136 is a D-olivosyltransferase, whereas LanGT4 is a L-rhodinosyltransferase

    Superconducting order parameter of the nodal-line semimetal NaAlSi

    Full text link
    Nodal-line semimetals are topologically non-trivial states of matter featuring band crossings along a closed curve, i.e. nodal-line, in momentum space. Through a detailed analysis of the electronic structure, we show for the first time that the normal state of the superconductor NaAlSi, with a critical temperature of Tc≈T_{\rm c} \approx 7 K, is a nodal-line semimetal, where the complex nodal-line structure is protected by non-symmorphic mirror crystal symmetries. We further report on muon spin rotation experiments revealing that the superconductivity in NaAlSi is truly of bulk nature, featuring a fully gapped Fermi-surface. The temperature-dependent magnetic penetration depth can be well described by a two-gap model consisting of two ss-wave symmetric gaps with Δ1=\Delta_1 = 0.6(2) meV and Δ2=\Delta_2 = 1.39(1) meV. The zero-field muon experiment indicates that time-reversal symmetry is preserved in the superconducting state. Our observations suggest that notwithstanding its topologically non-trivial band structure, NaAlSi may be suitably interpreted as a conventional London superconductor, while more exotic superconducting gap symmetries cannot be excluded. The intertwining of topological electronic states and superconductivity renders NaAlSi a prototypical platform to search for unprecedented topological quantum phases

    Structures of Mithramycin Analogues Bound to DNA and Implications for Targeting Transcription Factor FLI1

    Get PDF
    Transcription factors have been considered undruggable, but this paradigm has been recently challenged. DNA binding natural product mithramycin (MTM) is a potent antagonist of oncogenic transcription factor EWS–FLI1. Structural details of MTM recognition of DNA, including the FLI1 binding sequence GGA(A/T), are needed to understand how MTM interferes with EWS–FLI1. We report a crystal structure of an MTM analogue MTM SA–Trp bound to a DNA oligomer containing a site GGCC, and two structures of a novel analogue MTM SA–Phe in complex with DNA. MTM SA–Phe is bound to sites AGGG and GGGT on one DNA, and to AGGG and GGGA(T) (a FLI1 binding site) on the other, revealing how MTM recognizes different DNA sequences. Unexpectedly, at sub-micromolar concentrations MTMs stabilize FLI1–DNA complex on GGAA repeats, which are critical for the oncogenic function of EWS–FLI1. We also directly demonstrate by nuclear magnetic resonance formation of a ternary FLI1–DNA–MTM complex on a single GGAA FLI1/MTM binding site. These biochemical and structural data and a new FLI1–DNA structure suggest that MTM binds the minor groove and perturbs FLI1 bound nearby in the major groove. This ternary complex model may lead to development of novel MTM analogues that selectively target EWS–FLI1 or other oncogenic transcription factors, as anti-cancer therapeutics

    \u3cem\u3ePhaeophleospora vochysiae\u3c/em\u3e Savi & Glienke sp. nov. Isolated from \u3cem\u3eVochysia divergens\u3c/em\u3e Found in the Pantanal, Brazil, Produces Bioactive Secondary Metabolites

    Get PDF
    Microorganisms associated with plants are highly diverse and can produce a large number of secondary metabolites, with antimicrobial, anti-parasitic and cytotoxic activities. We are particularly interested in exploring endophytes from medicinal plants found in the Pantanal, a unique and widely unexplored wetland in Brazil. In a bio-prospecting study, strains LGMF1213 and LGMF1215 were isolated as endophytes from Vochysia divergens, and by morphological and molecular phylogenetic analyses were characterized as Phaeophleospora vochysiae sp. nov. The chemical assessment of this species reveals three major compounds with high biological activity, cercoscosporin (1), isocercosporin (2) and the new compound 3-(sec-butyl)-6-ethyl-4,5-dihydroxy-2-methoxy-6-methylcyclohex-2-enone (3). Besides the isolation of P. vochysiae as endophyte, the production of cercosporin compounds suggest that under specific conditions this species causes leaf spots, and may turn into a pathogen, since leaf spots are commonly caused by species of Cercospora that produce related compounds. In addition, the new compound 3-(sec-butyl)-6-ethyl-4,5-dihydroxy-2-methoxy-6-methylcyclohex-2-enone showed considerable antimicrobial activity and low cytotoxicity, which needs further exploration

    Derivatives of Mithramycin and Methods of Making and Uses Thereof

    Get PDF
    The invention, in one aspect, generally relates to mithramycin derivatives from mutated Streptomyces argillaceus and their production. The invention also relates using the derivatives for the treatment of various diseases. Finally, the invention relates to a mutated Streptomyces argillaceus useful in the production of the mithramycin derivatives
    • …
    corecore