30 research outputs found

    Exercise-induced molecular mechanisms promoting glycogen supercompensation in human skeletal muscle

    Get PDF
    Objective: A single bout of exercise followed by intake of carbohydrates leads to glycogen supercompensation in prior exercised muscle. Our objective was to illuminate molecular mechanisms underlying this phenomenon in skeletal muscle of man. Methods: We studied the temporal regulation of glycogen supercompensation in human skeletal muscle during a 5 day recovery period following a single bout of exercise. Nine healthy men depleted (day 1), normalized (day 2) and supercompensated (day 5) muscle glycogen in one leg while the contralateral leg served as a resting control. Euglycemic hyperinsulinemic clamps in combination with leg balance technique allowed for investigating insulin-stimulated leg glucose uptake under these 3 experimental conditions. Cellular signaling in muscle biopsies was investigated by global proteomic analyses and immunoblotting. We strengthened the validity of proposed molecular effectors by follow-up studies in muscle of transgenic mice. Results: Sustained activation of glycogen synthase (GS) and AMPK in combination with elevated expression of proteins determining glucose uptake capacity were evident in the prior exercised muscle. We hypothesize that these alterations offset the otherwise tight feedback inhibition of glycogen synthesis and glucose uptake by glycogen. In line with key roles of AMPK and GS seen in the human experiments we observed abrogated ability for glycogen supercompensation in muscle with inducible AMPK deletion and in muscle carrying a G6P-insensitive form of GS in muscle. Conclusion: Our study demonstrates that both AMPK and GS are key regulators of glycogen supercompensation following a single bout of glycogen-depleting exercise in skeletal muscle of both man and mouse. Keywords: AMP-activated protein kinase (AMPK), TBC1 domain family member 4 (TBC1D4), Glycogen synthase (GS), Glucose uptake, Exercise, Insulin actio

    Rapid radiochemical filter paper assay for determination of hexokinase activity and affinity for glucose-6-phosphate

    No full text
    Glucose phosphorylation by hexokinase (HK) is a rate-limiting step in glucose metabolism. Regulation of HK includes feedback inhibition by its product glucose-6-phosphate (G6P) and mitochondria binding. HK affinity for G6P is difficult to measure because its natural product (G6P) inhibits enzyme activity. HK phosphorylates several hexoses, and we have taken advantage of the fact that 2-deoxyglucose (2-DG)-6-phosphate does not inhibit HK activity. By this, we have developed a new method for rapid radiochemical analysis of HK activity with 2-DG as a substrate, which allows control of the concentrations of G6P to investigate HK affinity for inhibition by G6P. We verified that 2-DG serves as a substrate for the HK reaction with linear time and concentration dependency as well as expected maximal velocity and KM. This is the first simple assay that evaluates feedback inhibition of HK by its product G6P and provides a unique technique for future research evaluating the regulation of glucose phosphorylation under various physiological conditions

    AMPK and TBC1D1 Regulate Muscle Glucose Uptake After, but Not During, Exercise and Contraction

    Get PDF
    International audienceExercise increases glucose uptake in skeletal muscle independently of insulin signaling. This makes exercise an effective stimulus to increase glucose uptake in insulin-resistant skeletal muscle. AMPK has been suggested to regulate muscle glucose uptake during exercise/contraction, but findings from studies of various AMPK transgenic animals have not reached consensus on this matter. Comparing methods used in these studies reveals a hitherto unappreciated difference between those studies reporting a role of AMPK and those that do not. This led us to test the hypothesis that AMPK and downstream target TBC1D1 are involved in regulating muscle glucose uptake in the immediate period after exercise/contraction but not during exercise/contraction. Here we demonstrate that glucose uptake during exercise/contraction was not compromised in AMPK-deficient skeletal muscle, whereas reversal of glucose uptake toward resting levels after exercise/contraction was markedly faster in AMPK-deficient muscle compared with wild-type muscle. Moreover, muscle glucose uptake after contraction was positively associated with phosphorylation of TBC1D1, and skeletal muscle from TBC1D1-deficient mice displayed impaired glucose uptake after contraction. These findings reconcile previous observed discrepancies and redefine the role of AMPK activation during exercise/contraction as being important for maintaining glucose permeability in skeletal muscle in the period after, but not during, exercise/contraction

    Exercise increases circulating GDF15 in humans

    Get PDF
    Objective: The growth differentiation factor 15 (GDF15) is a stress-sensitive circulating factor that regulates systemic energy balance. Since exercise is a transient physiological stress that has pleiotropic effects on whole-body energy metabolism, we herein explored the effect of exercise on a) circulating GDF15 levels and b) GDF15 release from skeletal muscle in humans. Methods: Seven healthy males either rested or exercised at 67% of their VO2max for 1 h and blood was sampled from the femoral artery and femoral vein before, during, and after exercise. Plasma GDF15 concentrations were determined in these samples. Results: Plasma GDF15 levels increased 34% with exercise (p < 0.001) and further increased to 64% above resting values at 120 min (p < 0.001) after the cessation of exercise. There was no difference between the arterial and venous GDF15 concentration before, during, and after exercise. During a resting control trial, GDF15 levels measured in the same subjects were unaltered. Conclusions: Vigorous submaximal exercise increases circulating GDF15 levels in humans, but skeletal muscle tissue does not appear to be the source. Keywords: Skeletal muscle, Growth differentiation factor 15, Recovery, Physical activit
    corecore