111 research outputs found

    Antipolar ordering of topological defects in active liquid crystals

    Get PDF
    ATP-driven microtubule-kinesin bundles can self-assemble into two-dimensional active liquid crystals (ALCs) that exhibit a rich creation and annihilation dynamics of topological defects, reminiscent of particle-pair production processes in quantum systems. This recent discovery has sparked considerable interest but a quantitative theoretical description is still lacking. We present and validate a minimal continuum theory for this new class of active matter systems by generalizing the classical Landau-de Gennes free-energy to account for the experimentally observed spontaneous buckling of motor-driven extensile microtubule bundles. The resulting model agrees with recently published data and predicts a regime of antipolar order. Our analysis implies that ALCs are governed by the same generic ordering principles that determine the non-equilibrium dynamics of dense bacterial suspensions and elastic bilayer materials. Moreover, the theory manifests an energetic analogy with strongly interacting quantum gases. Generally, our results suggest that complex non-equilibrium pattern-formation phenomena might be predictable from a few fundamental symmetry-breaking and scale-selection principles.Comment: final accepted journal version; SI text and movies available at article on iop.or

    Optimal noise-canceling networks

    Full text link
    Natural and artificial networks, from the cerebral cortex to large-scale power grids, face the challenge of converting noisy inputs into robust signals. The input fluctuations often exhibit complex yet statistically reproducible correlations that reflect underlying internal or environmental processes such as synaptic noise or atmospheric turbulence. This raises the practically and biophysically relevant of question whether and how noise-filtering can be hard-wired directly into a network's architecture. By considering generic phase oscillator arrays under cost constraints, we explore here analytically and numerically the design, efficiency and topology of noise-canceling networks. Specifically, we find that when the input fluctuations become more correlated in space or time, optimal network architectures become sparser and more hierarchically organized, resembling the vasculature in plants or animals. More broadly, our results provide concrete guiding principles for designing more robust and efficient power grids and sensor networks.Comment: 6 pages, 3 figures, supplementary materia

    Geometric control of bacterial surface accumulation

    Full text link
    Controlling and suppressing bacterial accumulation at solid surfaces is essential for preventing biofilm formation and biofouling. Whereas various chemical surface treatments are known to reduce cell accumulation and attachment, the role of complex surface geometries remains less well understood. Here, we report experiments and simulations that explore the effects of locally varying boundary curvature on the scattering and accumulation dynamics of swimming Escherichia coli bacteria in quasi-two-dimensional microfluidic channels. Our experimental and numerical results show that a concave periodic boundary geometry can decrease the average cell concentration at the boundary by more than 50% relative to a flat surface.Comment: 10 pages, 5 figure

    Meaning of temperature in different thermostatistical ensembles

    Get PDF
    Depending on the exact experimental conditions, the thermodynamic properties of physical systems can be related to one or more thermostatistical ensembles. Here, we survey the notion of thermodynamic temperature in different statistical ensembles, focusing in particular on subtleties that arise when ensembles become non-equivalent. The 'mother' of all ensembles, the microcanonical ensemble, uses entropy and internal energy (the most fundamental, dynamically conserved quantity) to derive temperature as a secondary thermodynamic variable. Over the past century, some confusion has been caused by the fact that several competing microcanonical entropy definitions are used in the literature, most commonly the volume and surface entropies introduced by Gibbs. It can be proved, however, that only the volume entropy satisfies exactly the traditional form of the laws of thermodynamics for a broad class of physical systems, including all standard classical Hamiltonian systems, regardless of their size. This mathematically rigorous fact implies that negative 'absolute' temperatures and Carnot efficiencies >1>1 are not achievable within a standard thermodynamical framework. As an important offspring of microcanonical thermostatistics, we shall briefly consider the canonical ensemble and comment on the validity of the Boltzmann weight factor. We conclude by addressing open mathematical problems that arise for systems with discrete energy spectrum.Comment: 11 pages, 1 figur
    • …
    corecore